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Abstract. This paper investigates the behaviour of the random walk Me-

tropolis algorithm in high dimensional problems. Here we concentrate on the

case where the components in the target density is a spatially homogeneous

Gibbs distribution with finite range. The performance of the algorithm is

strongly linked to the presence or absence of phase transition for the Gibbs

distribution; the convergence time being approximately linear in dimension

for problems where phase transition is not present. Related to this, there is

an optimal way to scale the variance of the proposal distribution in order to

maximise the speed of convergence of the algorithm. This turns out to involve

scaling the variance of the proposal as the reciprocal of dimension (at least

in the phase transition free case). Moreover the actual optimal scaling can

be characterised in terms of the overall acceptance rate of the algorithm, the

maximising value being 0.234, the value as predicted by studies on simpler

classes of target density. The results are proved in the framework of a weak

convergence result, which shows that the algorithm actually behaves like an

infinite dimensional diffusion process in high dimensions.

1. Introduction and discussion of results

For Markov chain Monte Carlo algorithms, a crucial question of interest is how

times needed to ensure convergence scale with the dimensionality of the problem.

This question is complicated by the fact that its answer is fundamentally affected

by the dependence structure between the one-dimensional components of the target

distribution.

For the Gibbs sampler on the Ising model, Frigessi et al. (1986) demonstrate that

for sub-critical temperatures, convergence times scale exponentially with dimension,
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whilst in the super-critical case, convergence is polynomial in dimension. This

result accords with the heuristic thought to hold in much greater generality; that

convergence times for algorithms tend to be polynomial or exponential in dimension,

according to the presence or absence of phase transition.

In this paper we shall concentrate on the Random Walk Metropolis algorithm.

Suppose πn is an n-dimensional density with respect to Lebesgue measure, and

let q denote the increment density of a symmetric Random Walk. The algorithm

proceeds iteratively as follows. Given Xt, we propose a new value Yt+1 from the

density q(· −Xt). Now we set Xt+1 = Yt+1 with probability

α(Xt, Yt+1) = min{1, π(Yt+1)/π(Xt)} ,

Otherwise we set Xt+1 = Xt. Therefore in the algorithms we are considering, the

proposals are fully n-dimensional, as opposed to other schemes such as single site

updating.

For the Random Walk Metropolis algorithm, a closely related implementational

problem to the above scaling problem, is the following. For an n-dimensional prob-

lem, and given (for instance) an n-dimensional Gaussian proposal with variance σ2
n,

how should σn scale as a function of n? Furthermore, is it possible to characterise

optimality of σn in a way that can be practically utilised.

A partial answer to these two questions is given in Roberts et al. (1997)

where the problem is considered for the case where the proposal distribution con-

sists of n independent identically distributed components from an arbitrary den-

sity f say. In this case, it turns out to be optimal to scale the proposal vari-

ance as O(n−1), and the optimality criterion is most usefully expressed as scaling

the variance so that the overall acceptance probability for the algorithm (that is∫
Rn×Rn πn(x)q(x, y)α(x, y)dxdy) is approximately 0.234.

With independent components, phase transition is necessarily absent, so this

result conforms with the phase transition heuristic mentioned above. Although in

special cases (such as Gaussian target densities) it can be seen that the optimal

scaling and acceptance rate criterion are rather robust to changes in dependence

structure, no general results of this type appear to be available.
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In this paper we generalise Roberts et al. (1997), giving a weak convergence

result showing that for suitably behaved sequences of target densities with par-

tial correlations of finite range, the algorithms behaves like an infinite dimensional

Langevin diffusion. The result holds under the scaling of the proposal by O(n−1),

as in the independent component case.

In the case where no phase transition occurs, it follows that the optimal variance

can be characterised as that which induces an overall acceptance rate of 0.234 as

in the independent component case.

On the other hand, in the phase transition case, the limiting diffusion is in fact

reducible, being unable to move between phases. Movement between phases for

the n-dimensional algorithm therefore happens at a rate slower than O(n−1). This

is consistent with, and provides evidence to support the phase transition heuristic

mentioned above.

In the phase transition case, the sequence of probability measures admits more

than one limiting Gibbs measure or phase. It can be seen that the limiting diffu-

sion then acts locally in a way which is independent of its phase, apart from its

speed measure. An interesting consequence of this is the possibility of empirically

diagnosing phase transition behaviour in high dimensional problems by monitoring

overall acceptance rates of the algorithm.

2. Overview of results

We now describe in greater detail the results of this paper. Consider a collection

Vn consisting of n sites arranged on the lattice Zd. In other words, Vn is a finite

subset of Zd with |Vn| = n. Each site k ∈ Vn is given a real valued “colour” xk ∈ R,

and we call the collection (xk : k ∈ Vn) ∈ RVn a configuration. Viewed in this way,

a configuration is a function x : Vn → R.

Most probability distributions πn on RVn can be approximated by the Random

Walk Metropolis algorithm Xn = (Xn
t : t ≥ 0), in the sense that Xn

t ⇒ πn as

t→∞. In this paper, we discuss a scaling problem as the number of sites n tends

to infinity.
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More precisely, suppose at first the existence of an idealised system consisting of

all sites in Zd and a corresponding distribution π on

S = R
Z
d

= {configurations x : Zd → R}.

The measures πn are viewed as the conditional distribution of π, given the configu-

ration of sites xV cn = (xk : k /∈ Vn). The n-th Markov chain algorithm Xn depends

on a parameter σ2
n representing the variance of the Random Walk step. We shall

show how to choose σn as a function of n, so as to optimise the speed of convergence

of the algorithm in the limit n→∞.

Such a problem was worked on previously by Roberts et al. (1997), who con-

sidered the case when π(dx) =
∏
k∈Zd f(xk)dxk is a product measure. This corre-

sponds to assuming that the n sites in Vn take their colours x(k) independently of

each other.

In our generalisation, we take π as a “perturbed” product measure, i.e. the Gibbs

measure heuristically written as

π(dx) = e−
∑
k∈Zd Uk(x) ·

∏
k∈Zd

µ(dxk).(1)

Here, µ denotes a probability measure on R, and each of the functions Uk, k ∈ Zd

will be assumed to depend only on a finite number of neighbouring sites (xj) (finite

range interactions). Moreover, we will assume also that the set of functions (Uk :

k ∈ Zd) is preserved under spatial translations. Both these assumptions are often

satisfied in the statistical analysis of certain spatial models.

We now introduce some notation. Given a subset W ⊂ Zd, we define the σ-

algebra FW = σ(xk : k ∈ W ) and FW c = σ(xk : k /∈ W ). It is useful to generalise

the notation for the components xk of a configuration x ∈ S. Given a set W ⊂ Zd,

we let xW = (xk : k ∈W ). Then we obviously have x = (xW c , xW ).

Supposing now that z ∈ S is some fixed “boundary” configuration, and Vn ↑ Zd,

we say that the family (πn) of distributions on RVn is a scaling family if

πn(dx) = P[XVn ∈ dx |XV cn = zV cn ], on FVn = σ(RVn), X ∼ π.(2)

Thus πn is a regular conditional distribution of π with respect to FV cn , and z is a

choice of boundary condition, that is a fixed configuration in S.
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We have so far assumed the existence of π, but this is an idealisation. Suppose

we specify a family Π of probability kernels on S as follows:

Π = (πW (a, dx) : W ⊂ Zd finite, a ∈ S),(3)

where the heuristic interpretation is that πW (a, dx) = P[XW ∈ dx |XW c = aW c ].

For fixed z ∈ S, the scaling family will again be assumed of the form (2), but π

no longer appears as part of the definition. While this shift in perspective allows a

more realistic model (after all, MCMC is often done on Rn, n < ∞), we are now

faced with the added difficulty of identifying π, if this exists, so that (2) makes

sense in full. Furthermore, (2) may be compatible with several distinct probability

distributions π on S. This fundamental problem is addressed by the theory of

random fields.

From this point onwards, we shall assume given a fixed family Π as in (3),

satisfying the following consistency conditions:∫
πW (z, dy)πU (y, dx) = πW (z, dx), U ⊂W ⊂ Zd,(4)

which using (2) are simply

E[P[XU ∈ dx |XUc ] |XW c = z] = P[XU ∈ dx |XW c = z].

A probability ξ on S is called a Gibbs distribution if

ξ(dx | FW c) = πW (·, dx), W ⊂ Zd (finite), z ∈ S.(5)

Thus Gibbs distributions are precisely the probability measures for which X ∼ ξ

gives rise to the family of conditional distributions Π. The set G(Π) of Gibbs

distributions may consist of more than one measure. In this case, we say that there

is a phase transition.

We shall be interested only in those Gibbs distributions which are translation

invariant, i.e. ξ ◦ ⊕k = ξ for all k ∈ Zd, where ⊕k denotes the shift transformation

⊕kxj = xj+k.

The form taken by the specification Π will be important in the sequel, and we

now describe the notation we shall use. Let V = {0, v1, . . . , vm} ⊂ Zd be a finite

neighbourhood of site 0. We assume given a collection of functions

hk(x) = hk(xk, xk+v1 , . . . , xk+vm), x ∈ S, k ∈ Zd,
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which satisfy the conditions hk ◦ ⊕l = hk+l. The formal sum

H(x) = −
∑
k∈Zd

hk(x), x ∈ S

is called the Hamiltonian. It is not a well defined function on S; however, note that

its partial derivatives DxkH(x) are always proper finite functions on S, by virtue

of the imposed finite range condition. The Hamiltonian describes the energy of a

configuration x ∈ S. If we restrict ourselves to a finite collection of sites W ⊂ Zd

only, the corresponding natural quantity is the finite volume Hamiltonian

HW (zW c , xW ) = −
∑
k∈W

hk(zW c , xW ), x, z ∈ S, W ⊂ Zd.(6)

Note that this is always a well defined function on S.

We can now specify a consistent family Π by setting

πW (z, dx) = C−1
W,z exp[−HW (zW c , xW )]dxW ,(7)

where dxW =
∏
k∈W dxk is Lebesgue measure on RW , and CW,z is a normalising

constant. Under Hypothesis (H1) in Section 2, the measures πn(·) = πWn(z, ·)

converge weakly, in a suitable topology, to some Gibbs distribution ξ(·), for “most”

boundary conditions z. The limit will generally depend on z – If z ∼ ξ, we get that

limit.

Consider now, for a fixed set of sites Vn and boundary condition z, a Random

Walk Metropolis chain XVn,z
t , t = {0, 1, 2, . . . } for πn, defined in Section 4. As

shown in Roberts and Smith (1994), the law of XVn,z
t converges as t → ∞ to πn.

We shall investigate a diffusion approximation as n→∞.

It is shown in Section 3 that the discrete time generator of XVn,z
t can be written,

for any bounded differentiable test function f : RVn → R, x ∈ RVn ,

AVn,zf(x) = σ2
n

(
1
2

∑
i∈Vn

aiiVn,z(x)D2
xif(x)−

∑
i∈Vn

biVn,z(x)Dxif(x)
)

+ o(nσ2
n)

where σ2
n is the proposal step variance for the algorithm XVn,z

t .

In Section 4, we show that, if σ2
n = `2/n with ` a constant, then

lim
n→∞

aiiVn,z(x) = v(x), ξ a.e. x, and(8)

lim
n→∞

biVn,z(x) = −1
2
DxiH(x)v(x), ξ a.e. x(9)
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Here the function v is given by the formula

v(x) = 2`2Φ
(
− `

2

√
ξ(D2

x0
H | I)(x)

)
,(10)

where I denotes the (⊕k : k ∈ Zd) invariant σ-algebra and DxiH, D2
x0
H are

partial derivatives of the Hamiltonian (these are well defined due to the finite range

condition).

It will also be shown that

aiiVn,z(x) = E

[
1 ∧ dπn

dxVn
(XVn,z

1 )
/

dπn
dxVn

(x)
]

(11)

is the overall or expected acceptance probability for the next proposed move from x.

Thus (8) states that the acceptance probability converges to a nontrivial quantity.

Combining (8) and (9) with the expression for the generator of XVn,z
t , we get

for ξ a.e. x,

lim
n→∞

1
σ2
n

AVn,zf(x) =
1
2
v(x)

(
∆f(x)−∇H(x) · ∇f(x)

)
(12)

provided that the test function f : S → R depends on at most a finite number of

coordinates. This is proved as Theorem 8.

Probabilistically, this result is interpreted as follows (see Sections 5 and 6). Sup-

pose that we run the Random Walk Metropolis algorithm XVn,z
t from stationarity,

that is with XVn,z
0 ∼ πn. If Zt is the infinite dimensional Langevin diffusion solving

the SDE

dZt = v(Zt)1/2dBt −
1
2
v(Zt)∇H(Zt)dt, Z0 ∼ ξ,(13)

then we have the weak convergence result XVn,z
[tn/`2] ⇒ Zt (Theorem 13), and the

function v defined by (10) appears as a speed measure for Z.

We were only able to prove the probabilistic interpretation above under one

further hypothesis, (H6). Unfortunately, this assumption precludes the existence of

phase transitions. However, we believe the result to be true independently of the

existence or not of phase transitions. The convergence of the generators (Theorem

8) is certainly true under phase transitions.

Note that the existence of Zt is nontrivial and requires certain assumptions.

In particular, the space S is too big as a state space to be useful, and we restrict

attention to the set of those configurations x : Zd → R satisfying a growth condition

(see Section 5). Under this condition, the set of admissible configurations becomes
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a separable Hilbert space. We shall see that every Gibbs distribution is, under

appropriate conditions a stationary distribution for Z. A study of the diffusion Zt

gives much insight into the scaling behaviour of the Metropolis algorithm.

Most interestingly, suppose that there are no phase transitions for the family Π

in (3). In that case, there is only one possible Gibbs distribution ξ, independently

of the chosen boundary condition for πn, and the invariant σ-algebra I is trivial.

We can thus maximise the speed (and in particular the speed of convergence) of Zt

by choosing

ˆ̀≈ 2.38
/√∫

D2
x0

(x)ξ(dx).

In that case, the value of v becomes approximately 0.234. Since v is also the limit

of the acceptance probabilities in (8), we get the following easy rule:

Optimization Rule: In the absence of phase transitions, choose the proposal

variance σ2
n = ˆ̀/n; equivalently, tune σn so that the average acceptance rate

is approximately 0.234, and this will maximise the speed of convergence of the

algorithm for large n.

Suppose now on the contrary that there are phase transitions. Every Gibbs

distribution ξ is now a mixture of extreme, ergodic Gibbs distributions λ, in the

sense that there exists a probability γξ on G⊕(Π) such that (see Section 2, Standard

Fact (iii))

ξ(·) =
∫
λ(·)γξ(dλ).

The measures λ are mutually singular, and this gives the following behaviour for

the process Zt. Every realisation of Z belongs to the support of some unique λ

(according to the probability γξ) for all time, with excursions from one measure λ

to another λ′ 6= λ being impossible.

Stated differently, the state space of Zt is no longer irreducible. Accordingly, the

Metropolis chain XVn,z
t must, when n is large, take much longer to move about its

state space RVn (which is still irreducible). Since the measure πn approximates ξ,

it is multimodal, with “valleys” of very low probability. Consequently, the speed of

convergence to πn, when n is large, reduces dramatically, as the process is trapped

in each mode for a long time.
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In the presence of phase transitions, optimal scaling means that the acceptance

rate tends to zero with dimension.

3. Hypotheses and Gibbs distributions

In this section, we list three hypotheses which we shall make on the specification

Π and the scaling family given by (2), (3), and (7). We illustrate these by various

examples.

We begin with the hypothesis which underlies all subsequent developments. Be-

low, we shall give examples of specifications which satisfy it

Hypothesis (H1): Let V be a finite subset of Zd such that 0 ∈ V and v ∈ V

implies also that −v ∈ V For each k ∈ Zd, let hk : RV+k → R be C3, and

such that hk ◦⊕l = hk+l. We assume that the family of probability measures

Π defined by (2), (3) is tight in the local topology, and that the set G⊕(Π) of

translation invariant Gibbs distributions is nonempty.

Much is known about the applicability of Hypothesis (H1); a standard reference

is (Georgii, 1988). The local topology referred to above is that generated by all those

functions S → R which each depend on at most a finite number of coordinates. We

proceed to give some examples.

Example 1. Let µ be an absolutely continuous probability measure on R and

set hk(x) = (dµ/dx)(xk). The specification Π reduces to that of the product

measure
∏
k∈Zd µ(dxk), which is the only Gibbs distribution. Thus there is no

phase transition.

Example 2. Suppose that hk(x) = U ◦ ⊕k(x)− log(dµ/dx)(xk), where µ is an

absolutely continuous probability measure on R and U : SV → R is bounded. It

is a well known result (Georgii, 1988, Theorem 4.23) that Hypothesis (H1) then

holds. Phase transitions may occur. If we set Uk(x) = U ◦ ⊕k(x), we recover the

heuristic description (1).

Example 3. Let (ql : l ∈ V ) be a collection of real numbers with q0 6= 0 and

such that the matrix qij = q|i−j| is positive definite. We obtain a homogeneous

Gaussian specification by setting

hk(x) =
∑
l 6=0

qlxkxk+l + q0x
2
k(14)
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For y ∈ (−1, 1]d, let Ĵ(y) =
∑
v∈V qv cos(π

∑d
i=1 viyi) be the discrete Fourier trans-

form of (ql). The following three cases are possible (Georgii, 1988, p.277).

• If
∫
Ĵ(y)−1dy =∞, then G⊕(Π) = ∅.

• If ql = 0 for all l 6= 0, then G⊕(Π) contains a unique Gibbs measure (no phase

transition).

• If ql 6= 0 for some l 6= 0 and
∫
Ĵ(y)−1dy <∞, there is phase transition.

Example 4. Let p(x, y)dy be the transition probability function of some time

homogeneous, Harris recurrent Markov chain on R, with stationary distribution m.

Let (Mt : −∞ < t <∞) be a Markov chain with this transition function, and such

that Mt ∼ m for all t ∈ Z. We shall view the path of M as a configuration on Z,

and define a family Π by setting

πW (a, dx) = P

(
Mm+1 = xm+1, . . . ,Mn−1 = xn−1 |Mm = am,Mn = an

)
,

for W = {j : m < j < n} ⊂ Z. For this case, the Hamiltonian is built up of

interactions of the form

hk(x) = −
(

log p(xk−1, xk) + log p(xk, xk+1)
)
.

The following standard facts follow from Assumption (H1), and we shall make

use of these throughout the paper.

Standard Facts: (Georgii, 1988)

(i) When the set G⊕(Π) is nonempty, it is convex and its extreme points

consist of Gibbs distributions λ, any two of which are mutually singular

on S.

(ii) A measure λ is extreme if and only if it is ergodic with respect to the

group of translations (⊕k : k ∈ Zd).

(iii) Any Gibbs measure ξ ∈ G⊕(Π) can be written as a mixture of extremes:

there exists a probability γξ on G⊕(Π) such that

ξ(·) =
∫
λ(·)γξ(dλ)

This measure satisfies

γξ(A) = ξ(z : lim
Vn↑Zd

πVn(z, ·) ∈ A), A ⊆ G⊕(Π)
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(iv) Whenever λ ∈ G⊕(Π) is extreme, the following Ergodic Theorem holds

(Nguyen and Zessin, 1979): For any f ∈ Lp(dλ), 1 ≤ p <∞, let (Vn) be

an increasing sequence of finite subsets of Zd such that

sup
n

|V ′n|
|Vn|

<∞, V ′n = convex hull of Vn.(15)

If the interior diameter of Vn,

d(Vn) = sup{ radius of a sphere entirely contained in Vn},(16)

tends to infinity with n, then

lim
n→∞

1
|Vn|

∑
k∈Vn

f ◦ ⊕k = 〈λ, f〉 λ a.s. and in Lp(dλ).

With a view towards applying the above ergodic theorem, we now make the

assumption that

Hypothesis (H2): The scaling family (2), that is πn(dx) = πVn(z, dx), is con-

structed from a sequence (Vn) which is increasing, such that |Vn| = n, and

satisfies both (15) and d(Vn)→∞ (with d defined in (16)). Moreover, let V

be the neighbourhood in (H1); we set

∂Vn = {k ∈ Zd : k + V 6⊆ Vn},

and we shall assume that |V + ∂Vn| / |Vn| < Cn−α for some α > 0.

The condition involving α above restricts the growth of the boundary of Vn. It is

clearly satisfied if the sets Vn are approximately cubes, for example.

The third hypothesis we make will be useful in Section 4.

Hypothesis (H3): For every m ∈ Zd, the second and third order derivatives

of hm are bounded:∥∥Dxixjhk
∥∥
∞ + ‖Dxlxmxnhp‖∞ <∞, i, j, k, l,m, n, p ∈ Zd.

Note that (H3) is satisfied by Example 3 and may often hold for Example 2. We

believe that this condition can be relaxed considerably while keeping the results of

this paper intact, but for simplicity, we do not pursue the matter here.

Hypothesis (H4): Every Gibbs measure ξ ∈ G⊕(Π) satisfies, for some δ > 1∫
|xk|2δ ξ(dx) <∞, k ∈ Zd.
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This hypothesis implies that, for any probability measure ρ = (ρk : k ∈ Zd), the

Gibbs distributions ξ satisfy

ξ

(
x :

∑
k∈Zd

ρk |xk|2 <∞
)

= 1.

As a result, we can restrict attention to a much smaller class of admissible configu-

rations x : S → R, namely those which belong to E = L2(ρ). This will become the

state space for the diffusion approximation of Section 5. The higher order moments

will be used in conjunction with (H6) below, when we prove Lemma 12.

Example 2 revisited. Suppose that
∫
x2δµ(dx) < ∞ holds, then (H4) holds

also. Indeed, we have∫
|xk|2δ ξ(dx) =

∫
ξ(dz)

∫
|xk|2δ π{k}(z, dxk)

≤
∫
ξ(dz)

∫
|xk|2δ e‖Uk‖∞µ(dxk)

≤ e‖Uk‖∞
∫
|xk|2δ µ(dxk) <∞.

Example 3 revisited. Here, (H4) holds always since

sup
z

∫
|xk|2δ π{k}(z, dxk) = sup

z

∫
|xk|2δ e−

∑
v∈V avxkxk+v−a0(xk)2

dxk = C <∞

so that ∫
|xk|2δ ξ(dx) ≤

∫
ξ(dz) sup

z

∫
|xk|2δ π{k}(z, dxk) = C <∞.

The following hypothesis is to be used in Section 5 for the existence of the infinite

dimensional diffusion Z in (13). Note that this is satisfied by Example 3, and by

Example 2 when (H3) holds.

Hypothesis (H5): For each k ∈ Zd, the function hk(x) given in (H1) satisfies

the Lipschitz and growth conditions (with Euclidean norm)

max
v∈V
‖Dxvhk(x)−Dxvhk(y)‖

RV
≤ C · ‖x− y‖

RV
x, y ∈ RV

max
v∈V
‖Dxvhk(x)‖

RV
≤ C · (1 + ‖x‖

RV
), x ∈ RV

In Section 6, we shall prove the weak convergence (Theorem 13) referred to in

the introduction. We shall use an assumption that the limiting Gibbs distribution
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ξ is strongly mixing. There are various definitions of mixing in the literature. Here

we use the following (for standard results on this topic, see Doukhan, 1994).

Let U , W be two subsets of Zd, and consider the corresponding σ-algebras FU ,

FW . The strong mixing coefficient of ξ is the number

αξ(FU ,FW ) = sup{|ξ(A ∩B)− ξ(A)ξ(B)| : A ⊂ FU , B ⊂ FW }

= sup{|Cov(f(XU ), g(XW ))| : |f | , |g| ≤ 1}.
(17)

Note that the coefficients can be calculated solely from the specification Π. We

shall use the following assumption

Hypothesis (H6): There exists ε > 0 such that

∞∑
r=1

(r + 1)3d−1 |αξ(r)|ε/(4+ε)
<∞.

Here αξ(r) = sup{αξ(FA+V ,FB+V ) : dist(A,B) ≥ r, |A| = |B| = 2}, and the

distance between sets is defined as

dist(A,B) = min{max
i≤d
|ai − bi| : a ∈ A, b ∈ B}.

Assumption (H6) is only used once, in the proof of Lemma 12. It stops the

existence of phase transitions.

4. Random Walk Metropolis algorithm

In this section, we assume given the sequence πn(dx) of probability distributions

on RVn , where |Vn| = n. The dependence of πn on the boundary condition z shall

be temporarily ignored, and we shall identify RVn with Rn.

For n = 1, 2, 3, . . . , consider the Random Walk Metropolis algorithm for πn, with

proposal step

Xt 7→ Xt + σn(R1, . . . , Rn),

where R = (Ri)∞i=1 is a sequence of independent, identically distributed random

variables with symmetric distribution and unit variance. The real number σn is

used to control the variance of the proposal step generated from R. We shall

assume that the variables Ri have at least four finite moments.
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Lemma 1. For any suitably bounded and differentiable test function f : Rn → R,

the discrete time generator of the Random Walk Metropolis chain for a distribution

πn with Lebesgue density

πn(x1, . . . , xn) = e−Hn(x1,...,xn), n ≥ 1

is given, as σn → 0, by Taylor’s theorem

Anf(x) = −σ2
n

n∑
i=1

bin(x)Dif(x) +
1
2
σ2
n

n∑
i=1

aiin (x)D2
i f(x) + o(nσ2

n)

where

aiin (x) = E[1 ∧ e−K
i
n(x)](18)

bin(x) = E

[
DiHn(x+ σnR |Ri = 0)e−K

i
n(x);Ki

n(x) > 0
]

(19)

and

Ki
n(x) = Hn(x+ σnR |Ri = 0)−Hn(x)

= σn

n∑
r 6=i

DrHn(x)Rr +
1
2
σ2
n

n∑
r,s 6=i

DrsHn(x)RrRs

+
1
6
σ3
n

n∑
r,s,t6=i

DrstHn(x+ Zn)RrRsRt

(20)

with some random variable Z such that ‖Zn‖ ≤ ‖σnW‖

Proof. Let F (dy) = q(y)dy be the distribution function of R1. The generator of

the n-th chain is

Anf(x) = E

[
f(x+ σnR)− f(x); 1 ∧ πn(x+ σnR)/πn(x)

]
= E

[
n∑
i=1

Dif(x)σnRi +
1
2

n∑
i,j=1

Dijf(x)σ2
nRiRj

+ o(σ2
n ‖R‖

2); 1 ∧ e
−

(
Hn(x+σnR)−Hn(x)

)]

= σn

n∑
i=1

Dif(x)
∫
y · γin(y)dF (y)

+
1
2
σ2
n

n∑
i,j=1

Dijf(x)
∫∫

yz · γijn (y, z)dF (y)dF (z) + o(nσ2
n)
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Here the coefficients are

γin(y) = E

[
1 ∧ e−

(
Hn(x+σnR)−Hn(x)

)
|Ri = y

]
= E

[
1 ∧ e−

(
Hn(x+σnR |Ri=y)−Hn(x)

)]
where the notation Hn(x+σnR |Ri = y) means that the variable Ri is replaced by

y, i.e.

Hn(x+ σnR |Ri = y) = Hn(x1 + σnR1, . . . , xi + σny, . . . , xn + σnRn)

Similarly,

γijn (y, z) = E

[
1 ∧ e−

(
Hn(x+σnR)−Hn(x)

)
|Ri = y,Rj = z

]
= E

[
1 ∧ e−

(
Hn(x+σnR |Ri=y,Rj=z)−Hn(x)

)]
To express the generator in terms of σn, we begin by expanding the functions γin,

γijn in powers of y, z. Recall that if g is some differentiable function on R, the the

function z 7→ 1∧ exp(−g(z)) is also differentiable, except at a countable number of

points, with derivative given Lebesgue almost everywhere by the function

d

dz
1 ∧ e−g(z) =

−g
′(z)e−g(z) if g(z) > 0

0 if g(z) ≤ 0

Now take g(z) = Hn(x+ σnR |Ri = z); for almost every xi ∈ R, as σn → 0,

γin(y) = E[1 ∧ e−
(
Hn(x+σnR |Ri=0)Hn(x)

)
]

− (σny)E
[
DiHn(x+ σnR |Ri = 0) · e−

(
Hn(x+σnR |Ri=0)−Hn(x)

)
;

Hn(x+ σnR |Ri = 0)−Hn(x) > 0
]

+ o(σ2
n)

Also

γijn (y, z) = E[1 ∧ e−
(
Hn(x+σnR |Ri=y,Rj=z)−Hn(x)

)
] + o(1)

Since (Ri) is iid with zero mean and unit variance, we then get (18), (19) and (20)

as σn → 0.

Note that (18) gives the acceptance probability for a proposed move from x

(compare with (11)).
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5. Identifying the diffusion limit

Recall the Taylor series for Ki
n(x) given in (20). We shall show in this section

that, if σ2
n = `/n, we haveKi

n(x)⇒ `s(x)N+ 1
2`

2a(x), whereN is a standard normal

variable. This will allow the identification of the limiting diffusion coefficients (18)

and (19). We shall do this for the scaling problem using Lemma 1, with Hn(x) =

HVn(zV cn , xVn) and a sequence R = (Rk : k ∈ Zd).

Recall the definition HV (x) =
∑
v∈V hv(x) in (6) For each ξ ∈ G⊕(Π), we have

by (H4, H5)

s(ξ) =
(∫ (

Dx0HV (x)
)2
ξ(dx)

)1/2

<∞.(21)

Lemma 2. For every extremal Gibbs distribution λ ∈ G⊕(Π) and z [a.e. ξ], if

(H1,H2,H4,H5) holds, then

Gn(z, x) :=
1

s(λ)
√
n

∑
k∈Vn

DxkHVn(zV cn , xVn) ·Rk ⇒ N (0, 1), x [a.e. λ],(22)

Moreover, if F z,xn (u) = P(Gn(z, x) ≤ u), set

Bn(x) =
∑
k∈Vn

|DxkH(x)|2 , In(x) =
∑
k∈Vn

|DxkH(x)|3 ,

and Γn(x) = [Bn(x)/ns(λ)2]1/2. Let δ be as in (H4), and set

Mn(z, x) =
(

1
n

∑
k∈V+Vn

|zk|2δ
)1/δ

+
(

1
n

∑
k∈V+Vn

|xk|2δ
)1/δ

.

If we take 0 < θ < α(1− 1/δ)/2 (which is always possible, α begin given in (H2)),

then there are constants C1 and C3 such that

sup
u
|F z,xn (u)− Φ(u)| ≤

(
Γn(x) ∨ 1

)
·
∣∣Γn(x)−1 − 1

∣∣+ C1In(x)/Bn(x)3/2

+ C3Mn(x, z)n2θ−α(1−1/δ) + n−θ/
√

2π.
(23)
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Proof. If k ∈ Vn\∂Vn then

DxkHVn(zV cn , xVn) = Dxk

∑
j∈Vn

h(xj , xj+v1 . . . , xj+vm)

= Dx0hk(xk, xk+v1 , . . . , xk+vm)

+ · · ·+Dxvmhk−vm(xk−vmxk+v1−vm , . . . , xk)

=
∑
i∈V

Dxihk−i(x)

= (
∑
i∈V

Dxih−i) ◦ ⊕k(x)

= Dx0H ◦ ⊕k(x) = DxkH(x)

independently of the chosen boundary configuration z. Define

Sn(x) = Bn(x)−1/2
∑
k∈Vn

DxkH(x)Rk

and

Qn(z, x) =
1

s(λ)
√
n

∑
k∈∂Vn

[DxkHVn(zV cn , xVn)−DxkH(x)]Rk,

so that

1
s(λ)
√
n

∑
k∈Vn

DxkHVn(zV cn , xVn)Rk = Γn(x)Sn(x) +Qn(z, x).

Then since Γn(x) > 0, the triangle inequality gives

sup
u

∣∣∣∣P(Γn(x)Sn(x) ≤ u
)
− Φ(u)

∣∣∣∣
≤ sup

u

∣∣∣∣P(Sn(x) ≤ u/Γn(x)
)
− Φ(u/Γn(x))

∣∣∣∣+ sup
u
|Φ(u/Γn(x))− Φ(u)|

≤ sup
v
|P(Sn(x) ≤ v)− Φ(v)|+ (1 ∨ Γn(x))

∣∣1− Γn(x)−1
∣∣

By the Ergodic Theorem (Standard Fact (iv), Section 2) and (H4,H5) which ensure

integrability, we have Γn → 1 [a.e. λ]. Moreover, Sn(x) ⇒ N (0, 1) by the Central

Limit Theorem. Applying the Esseen bound (Petrov, 1995, Theorem 5.7, p.154)

we get a constant C1 such that

sup
u
|P(Sn(x) ≤ u)− Φ(u)| ≤ C1In(x)/Bn(x)3/2.
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Now using (Petrov, 1995, Lemma 1.9, p.20), we have

sup
u
|F z,xn (u)− Φ(u)| ≤ sup

u

∣∣∣∣P(Γn(x)Sn(x) ≤ u
)
− Φ(u)

∣∣∣∣
+ P(|Qn(z, x)| > n−θ) + n−θ/

√
2π,

whereas the Chebyshev inequality gives

P

(
|Qn(z, x)| > n−θ

)
≤ n2θ

E

(
1√
n

∑
k∈∂Vn

[DxkHVn(zV cn , xVn)−DxkH(x)]Rk

)2

=
n2θ

|Vn|
∑
k∈∂Vn

∣∣DxkHVn(zV cn , xVn)−DxkH(x)
∣∣2 ,

as the sequence (Rk) is IID with zero mean and unit variance. Using the Lipschitz

bound from (H5), and since |Vn| = n, we find a constant C2 such that

P(|Qn(z, x)| > n−θ) ≤ n2θ

n

∑
k∈V+∂Vn

C2(z2
k + x2

k).

From Hölder’s inequality, taking δ > 1 as above,

∑
k∈V+∂Vn

z2
k =

∑
k∈V+∂Vn

1V+∂Vn(k)z2
k

≤
( ∑
k∈V+V+Vn

|1V+∂Vn(k)|δ/(δ−1)

)1−1/δ( ∑
k∈V+V+Vn

|zk|2δ
)1/δ

= |V + ∂Vn|1−1/δ

( ∑
k∈V+V+Vn

|zk|2δ
)1/δ

.

Consequently by (H2), there exists a constant C3 such that

P(|Qn(z, x)| > n−1) ≤ C2n
2θ

(
|V + ∂Vn|
|Vn|

)1−1/δ

Mn(z, x)

< C3n
2θ−α(1−1/δ)Mn(z, x).

Furthermore, by the Ergodic Theorem, (H4) and |Vn + V | / |Vn| → 1 due to (H2),

we get for x [a.e. λ]/L1(dλ) and z [a.e. ξ]/L1(dξ),

lim
n→∞

Mn(z, x) =
(∫
|x0|2δ ξ(dx)

)1/δ

+
(∫
|x0|2δ λ(dx)

)1/δ

.

Thus we see that P(|Qn(z, x)| > n−1) tends to zero, and consequently it follows

both the weak convergence in (22) and the bound (23).
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The second sum in the expansion of Ki
n can also be treated by the ergodic

theorem. Due to the finite range condition in (H1), we have DxuxvHVn = 0 for

“most” pairs u, v ∈ Vn.

Lemma 3. For each extremal Gibbs distribution λ ∈ G⊕(Π), if (H1,H2,H3) holds

there exists a real number a(λ) such that, as n→∞, for any z ∈ S,

Vn(z, x) :=
1
n

∑
i,j∈Vn

DxixjHVn(zV cn , xVn)RiRj → a(λ), x [a.e. λ], [a.s. P].

Moreover, there exists a constant C4 such that

P

(
|Vn(z, x)− a(λ)| > ε

)
≤ C4/ε

2n on
{
x :

∣∣∣∣∣ 1n ∑
i∈Vn

D2
x0
H(x)− a(λ)

∣∣∣∣∣ < ε/2
}
.

Proof. Since Ri is independent of Rj when i 6= j, only the diagonal terms will

actually matter. Moreover, by the bounded range assumption (H1), we can write

Vn(z, x) :=
∑
j∈V

1
n

∑
i∈Vn

Dxixi+jHVn(zV cn , xVn)RiRi+j .

Note that the variance of each term in the second (inner) sum is bounded, uniformly

in x, z ∈ S by (H3). When j 6= 0, the Strong Law of Large Numbers holds and

Chebyshev’s inequality gives

P

(∣∣∣∣∣ 1n ∑
i∈Vn

Dxixi+jHVn(·)RiRi+j

∣∣∣∣∣ > ε

)
≤ 1
ε2n2

∑
i∈Vn

∣∣Dxixi+jHVn(·)
∣∣2

≤ C1/ε
2n,

where C1 is some generic constant. For j = 0, we write

1
n

∑
i∈Vn

D2
xiHVn(zV cn , xVn)R2

i =
1
n

∑
i∈Vn

D2
xiH(x)

+
1
n

∑
i∈Vn

D2
xiH(x)(R2

i − 1)

+
1
n

∑
i∈∂Vn

(
D2
xiHVn(zV cn , xVn)−D2

xiH(x)
)
R2
i ,

of which both the second and third sums tend a.s. to zero, by the Strong Law

of Large Numbers for independent random variables. Moreover, Chebyshev’s in-

equality gives a similar estimate as before. For the first sum, the Ergodic Theorem
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gives

lim
n→∞

1
n

∑
i∈Vn

D2
xiH(x) = 〈λ,D2

x0
H〉 =: a(λ), x [a.e. λ]/L2(dλ).(24)

Finally, let us consider the third term in the definition of Ki
n given in (20).

Lemma 4. If (H3) holds, then for any sequence (Zin), as n→∞

Jn(z, x) :=
1

n3/2

∑
r,s,t6=i

DxrxsxtHVn(zV cn , xVn + Zn) ·RrRsRt → 0, [a.s. P].

Moreover, P(|Jn(·)| > ε) ≤ C5/ε
2n for some constant C5.

Proof. By the nature of HVn , for fixed n the sum has at most 6 |V |2 n nonzero

terms. Hence by (H3), when divided by n3/2, it tends to zero by the Law of Large

Numbers. The estimate comes again from Chebyshev’s inequality.

For a given extreme Gibbs distribution λ ∈ G⊕(Π), we shall now relate the

numbers s(λ)2 and a(λ).

Lemma 5. For every extremal Gibbs distribution λ ∈ G⊕(Π), the numbers s(λ)2

and a(λ) defined by (21) and (24) are equal.

Proof. Since the function hk only depends on xk+V , we shall condition on FW c ,

where W = V + V .

s(λ)2 = 〈λ,
(
Dx0H

)2

〉

= 〈λ,
(∑
i∈V

Dxih−i

)2

〉

=
∫
λ(dz)

∫
RW

πW (z, dx)
(∑
i∈V

Dxih−i(x)
)2

=
∫
λ(dz)

∫
RW

C−1
z,W e

−HW (zWc ,xW )

(∑
i∈V

Dxih−i(x)
)2

dxW

Now using integration by parts, since∣∣∣e−HW (zWc ,xW )Dxkh−k(x)
∣∣∣→ 0 as |x| → ∞,
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we find that

s(λ)2 = −
∫
λ(dz)

∫
RW

C−1
z,WDx0

(
e
∑
j∈W hj(zWc ,xW )

)
·
∑
i∈V

Dxih−i(x)dxW

=
∫
λ(dz)

∫
RW

C−1
z,W e

−HW (zWc ,xW )

(∑
i∈V

D2
xih−i(x)

)
dxW

=
∫
λ(dz)

∫
RW

πW (z, dx)
∑
i∈V

D2
x0
H(x)

= a(λ)

Combining the last four lemmas, the limiting diffusion coefficient becomes

v(x) = lim
n→∞

aiin (zV cn , xVn) = E

(
1 ∧ e− 1

2 `
2a(λ)−`s(λ)N

)
x [a.e. λ].(25)

We shall need a bound on the rate of convergence:

Lemma 6. Let v(x) be defined as in (25), and choose any sequence εn ↓ 0. Then

lim
n→∞

sup
(z,x)∈En(εn)

∣∣aiin (zV cn , xVn)− v(x)
∣∣ = 0,

where the set En(ε) ⊂ S × S satisfies

En(ε) = E1,x,λ
n (ε) ∩ E2,x,λ

n (ε) ∩ E3,x,λ
n (1) ∩ E3,z,ξ

n (1) ∩ E4,x,λ
n (ε),

and using notation defined in Lemmas 2 and 3,

E1,x,λ
n (ε) =

{
x :
∣∣∣∣ 1nBn(x)− s(λ)2

∣∣∣∣ < ε

}
,

E2,x,λ
n (ε) =

{
x :
∣∣∣∣ 1nIn(x)− 〈λ, |Dx0H|

3〉
∣∣∣∣ < ε

}
,

E3,x,λ
n (ε) =

{
x :

∣∣∣∣∣ 1n ∑
k∈Vn+V

|xk|2δ − 〈λ, |xk|2δ〉

∣∣∣∣∣ < ε

}
,

E4,x,λ
n (ε) =

{
x :

∣∣∣∣∣ 1n ∑
k∈Vn

D2
x0
H(x)− a(λ)

∣∣∣∣∣ < ε

}
.

Proof. We work with a fixed λ and put σ = `s(λ), µ = `2

2 a(λ). In the notation

defined in Lemmas 2, 3 and 4, we have

Ki
n(z, x) = σ

(
Gn(z, x) +

`

2s(λ)
[Vn(z, x)− a(λ)] +

`2

6s(λ)
Jn(z, x)

)
+ µ.
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Letting Hz,x
n denote the CDF of (Ki

n(z, x) − µ)/σ, it follows through integration

by parts that

∣∣aiin (zV cn , xVn)− v(x)
∣∣ =

∣∣∣∣∫ 1 ∧ e−σu+µ
(
dHz,x

n (u)− dΦ(u)
)∣∣∣∣

=

∣∣∣∣∣
∫
{u>−µ/σ}

(
Hz,x
n (u)− Φ(u)

)
σe−σu+µdu

∣∣∣∣∣
≤ σ sup

u
|Hz,x

n (u)− Φ(u)| .

From (Petrov, 1995, p.20) we get for any choice of β > 0

sup
u
|Hz,x

n (u)− Φ(u)|

≤ sup
u
|F xn (u)− Φ(u)|+ P

(
|Vn(z, x)− a(λ)| > 2βs(λ)/`

)
+ P

(
|Jn(z, x)| > 6βs(λ)/`2

)
+ s(λ)

2β`−1 + 6β`−2

√
2π

.

Now applying the convergence estimates from Lemmas 2, 3 and 4,

sup
u
|Hz,x

n (u)− Φ(u)|

≤
(

Γn(x) ∨ 1
)
·
∣∣Γn(x)−1 − 1

∣∣+ C1In(x)/Bn(x)3/2 + C3Mn(x, z)n2θ−α(1−1/δ)

+ n−θ/
√

2π + C4
`2

4β2s(λ)2n
+ C5

`4

36β2s(λ)2n
+ s(λ)β

2`−1 + 6`−2

√
2π

,

provided x ∈ E4,x,λ
n (βs(λ)`−1). Assuming furthermore that x ∈ E1,x,λ

n (βs(λ)`−1),

we have |Γn(x)− 1| < const · β. If also x ∈ E2,x,λ
n (βs(λ)`−1), then

In(x)/Bn(x)3/2 = n−1/2
[ 1
n
In(x)

]/[ 1
n
Bn(x)

]3/2
≤ n−1/2 〈λ, |Dx0H|

3〉+ βs(λ)`−1

a(λ)− βs(λ)`−1
.

Finally, when x ∈ E3,x,λ
n (1) and z ∈ E3,z,ξ

n (1),

Mn(x, z) ≤
(
〈λ, |x0|2δ〉+ 1

)1/δ

+
(
〈ξ, |x0|2δ〉+ 1

)1/δ

.

Hence, for given εn ↓ 0, we can take β = εn`/s(λ), and we shall have the stated

uniform convergence.

To get the limiting drift, we can proceed in exactly the same way.
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Lemma 7. For any sequence εn ↓ 0, define the sets En(ε) as in Lemma 6, then

lim
n→∞

sup
(z,x)∈En(εn)

∣∣∣∣bin(zV cn , xVn)− 1
2
DxiH(x)v(x)

∣∣∣∣ = 0.

Proof. Consider the expression for bin(zV cn , xVn) in (19), and note first that

lim
n→∞

DxiHVn(zV cn , xVn + `n−1/2R |Ri = 0)

= lim
n→∞

(
DxiHVn(zV cn , xVn) + `n−1/2

∑
r 6=i

DxixrHVn(zV cn , xVn)Rr

+
`2

n

n∑
r,s 6=i

DxixrxsHVn(zV cnxVn + Z)RrRs

)
= DxiH(x),

because the last two sums have respectively at most |V | and |V |2 nonzero terms.

Moreover, the convergence is uniform in (z, x) due to (H3). By Lemmas 2, 3 and

4, we find that

lim
n→∞

bin(zV cn , xVn) = DxiH(x)E(e−M ;M > 0),

where M ∼ N (µ, σ2) and µ = (`2/2)a(λ) = σ2/2. Using a similar technique as in

Lemma 6, the limit is uniform in (z, x), along any sequence En(εn) with εn ↓ 0.

Finally, by a standard calculation, the relation between µ and σ implies that

E

(
1 ∧ e−M

)
= 2E

(
e−M ;M > 0

)
= 2Φ

(
−σ/2

)
.

Comparing this with (25) gives

lim
n→∞

bin(zV cn , xVn) =
1
2
DxiH(x)v(x).

Lemmas 6 and 7 immediately yield the form of the limiting diffusion operator

we were aiming for:

Aλf(x) = 2`2Φ(−`s(λ)/2)
(
−1

2
〈∇H(x),∇〉f(x) +

1
2

∆f(x)
)
, x [a.e. λ].(26)

Here ∇H(x) denotes the vector in S with components k 7→ DxkH(x). The above

is true for any extreme Gibbs distribution λ ∈ G⊕(Π). If we take an arbitrary
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ξ ∈ G⊕(Π), then according to Standard Facts (ii) and (iii) in Section 2, we get ξ

a.e.

Aξf(x) = 2`2Φ
(
− `

2

√
ξ(Dx0H | I)(x)

)(
−1

2
〈∇H(x),∇〉f(x) +

1
2

∆f(x)
)

(27)

We summarise with a theorem.

Theorem 8. Suppose that ξ is a Gibbs distribution belonging to G⊕(Π). Given

(πn) a scaling family (2) with boundary condition z and satisfying (H1, H2, H3,

H4, H5), let AVn,z be the generator of the Metropolis algorithm XVn,z
t associated

with πn. If f : S → R is any bounded differentiable test function which depends on

at most a finite number of coordinates, then

lim
n→∞

(n/`2)AVn,zf(x) = Aξf(x), (x, z) [a.e. ξ ⊗ ξ].

Example 2 revisited. Let µ(dx) = f(x)dx; equivalently, hk(xk) = − log f(xk),

and hence

DxkH(x) = −Dxk

∑
j

log f(xj) = f ′(xk)/f(xk).

Since there is no phase transition, the σ-algebra I is trivial. Thus

s(ξ) =
(∫

(Dx0H)2dξ

)1/2

=
(∫

ξ(dx)
∫
f ′(x0)2/f(x0)2 · f(x0)dx0

)1/2

=
(∫

f ′(x0)2dx0

f(x0)

)1/2

We can write this in terms of a random variable X ∼ f(x)dx, and then we get

s2 = E

(
f ′(X)/f(X)

)2. This agrees with (Roberts et al., 1997).

Example 3 revisited. For the Gaussian specification (14), we have Dx0H(x) =

q0, a constant. Consequently we must have s(ξ) = q
1/2
0 , and the speed measure v

of (10) is also constant, given by

v(x) ≡ 2`2Φ
(
− `

2
q

1/2
0

)
The speed is maximised for ˆ̀≈ 2.38/q1/2

0 , which is one quarter the variance of the

Gaussian product measure. Interestingly, this is independent of the existence or

nonexistence of phase transitions.
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Example 4 revisited. Recall that Mt ∼ m is a Markov chain with transition

probability p(x, y)dy. When p(x, y) is sufficiently smooth, we have

Dx0H(x) = −
(
D2p(x−1, x0)/p(x−1, x0) +D1p(x0, x1)/p(x0, x1)

)
.

Then

s2 = E

(
Dx0H(M−1,M0,M1)

)2

.

6. The limiting diffusion

In this section, we shall study properties of the diffusions associated with the

operators Aλ given by (26), and more generally the operator Aξ of (27). We first

show the existence of such processes.

Let ρ = (ρk : k ∈ Zd) be the probability measure on Zd satisfying

ρ({k}) := ρk = e−|k|/
∑
j∈Zd

e−|j|

We shall write E = L2(Zd, ρ), and denote the corresponding Hilbert space norm by

‖·‖ρ. The space E is a separable Hilbert space, and will be taken as the state space

for our diffusions. Accordingly, we will focus only on Gibbs distributions which

satisfy Hypothesis (H4) of Section 2. Note that RVn ⊂ E in a natural way, so that

the Metropolis chains (XVn,z) can all be taken to evolve on E.

Since E is a Hilbert space, it admits the existence of a Brownian motion (Bt)

Consequently, by the Hilbert space version of Ito’s formula (e.g. Métivier, 1982), if

the SDE

Zt = Z0 +Bt −
1
2

∫ t

0

∇H(Zt)dt(28)

has a solution, it can be taken as a Markov process on E with generator

Lf(x) =
1
2

∑
k∈Zd

D2
xk
f(x)− 1

2

∑
k∈Zd

DxkH(x)Dxkf(x), f ∈ C2
b (E)

We prove this under Hypothesis (H5).

Proposition 9. Under Hypothesis (H5), if E(Z2
0 ) <∞, there exists a unique con-

tinuous, nonexplosive Markov process Zt on E which satisfies (28), and for each

finite T , sups≤T E ‖Zs‖
2
ρ <∞.
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Proof. The result follows from (Da Prato and Zabczyk, 1996, Theorem 5.3.1, p. 66)

provided we show that the function k 7→ DxkH(x) satisfies the linear growth con-

dition

‖∇H(x)‖ρ ≤ C1(1 + ‖x‖ρ)(29)

for some constant C1, and the Lipschitz condition

‖∇H(x)−∇H(y)‖ρ ≤ C2 ‖x− y‖ρ(30)

for some constant C2. To prove (31), note that the measure ρ satisfies

Mρ := sup
k∈Zd

sup
v∈V+V

ρk/ρk+v <∞.

Then we have

‖∇H(x)‖ρ =
(∑
k∈Zd

ρk |DxkH(x)|2
)1/2

=
(∑
k∈Zd

ρk

∣∣∣∣∣∑
v∈V

Dxvhk−v(x)

∣∣∣∣∣
2)1/2

,

so that by (H5), for some constants C ′, C ′′. Recalling that V = {0, v1, . . . , vm},

≤
(∑
k∈Zd

ρk · C |V |
∑
v∈V

(1 + ‖(xk−v, xk−v+v1 , . . . , xk−v+vm)‖)2

)1/2

≤ C ′
(∑
k∈Zd

ρk
∑
v∈V

[
1 + ‖(xk−v, xk−v+v1 , . . . , xk−v+vm)‖2

])1/2

= C ′′
(

1 +
∑
k∈Zd

ρk
∑
v∈V

x2
k−v + x2

k−v+v1 + · · ·+ x2
k−v+vm

)1/2

,

and setting V − V = {v − v′ : v, v′ ∈ V }, this can be written

≤ C ′′
(

1 + |V |
∑

r∈V−V

∑
k∈Zd

ρkx
2
k+r

)1/2

≤ C ′′
(

1 +Mρ |V |3
∑
k∈Zd

ρkx
2
k

)1/2

≤ C1(1 + ‖x‖ρ),

as required in (31). The proof of (30) is virtually identical and is left to the

reader.
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Below, we shall need to identify a core for the generator L.

Lemma 10. Let C3,b(RW ) = {f : RW → R,
∥∥Dkf

∥∥
∞ < ∞, k = 1, 2, 3}. For any

extremal Gibbs distribution λ ∈ G⊕(Π), the set

D = {f ∈ C3,b : f depends only on a finite number of coordinates}

=
⋃

W finite

C3,b(RW )

is dense in L2(E, dλ), and is a core for the strong infinitesimal generator of Z

acting on L2(E, dλ).

Note that D separates points in E. Indeed, given two configurations x, y such

that ‖x‖ρ, ‖y‖ρ < ∞, if x 6= y there exists some function g ∈ D such that g(x) 6=

g(y).

Proof. We show first that D is dense. For a given finite set Vn, let λVn be the

restriction of λ to RVn . The space C3,b(RVn) (which is contained in D) is dense

in L2(RVn , dλVn). Note that L2(RVn , dλVn) is naturally imbedded into the space

L2(E, dλ). If a function f belongs to the latter, the martingale convergence theorem

implies that fn = λ(f | FVn) converges to f in L2(E, dλ) whenever Vn ↑ Zd. But

fn also belongs to L2(RVn , dλVn), and hence can be approximated by a function in

D. Thus f itself can be approximated by a function in D and therefore this set is

dense.

To prove that D is a core for L, let (Tt) denote the operator semigroup of Z,

acting on L2(E, dλ), and suppose that L, with domain D(L), is the associated strong

infinitesimal generator. We will show thatD ⊂ D(L) and that Tt : D → D(L), which

establishes the claim by Ethier and Kurtz (1986), , p.17, prop. 3.3.

It is known by Ito’s formula that the process

Mt = f(Zt)− f(Z0)−
∫ t

0

Lf(Zs)ds

is a local martingale for each f ∈ D. Moreover, the solution process Z satisfies for

each finite T :

sup
s≤T

Ex ‖Zs‖2ρ <∞ if ‖x‖2ρ <∞.(31)
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Let Tn = inf{s > 0 : ‖Zs‖ρ ≥ n}; by the continuity of the sample paths of Z,

Mt∧Tn is a bounded martingale, and for ‖x‖ρ <∞, we therefore have

Exf(Zt∧Tn) = f(x) + Ex
∫ t

0

Lf(Zs)1(Tn>s)ds.

Now f is bounded and continuous on E, and in case f depends only on the coor-

dinates xW , we have by (H5) some constant Cf such that

‖Lf(x)‖ρ ≤ Cf (1 + ‖x‖
RW+V ).(32)

Thus we have
∣∣Lf(Zs)1(Tn>s)

∣∣ ≤ Cf (1 + ‖Zs‖RW+V ), which by (31) is integrable.

Dominated convergence now gives

Exf(Zt) = f(x) +
∫ t

0

Ex[Lf(Zs)]ds.

Moreover, from this it follows easily, by (31), (32) and the continuity of x 7→ Lf(x)

on E, that

lim
t→0

∫
λ(dx)

∣∣t−1(Exf(Zt)− f(x))− Lf(x)
∣∣2 = 0,

which establishes that D ⊂ D(L). Similarly, it is clear that Ttf(x) = Exf(Zt) also

belongs to the domain of L. This ends the proof.

As a direct implication of the above lemma, we get

Proposition 11. Let ξ ∈ G⊕(Π) be a Gibbs distribution satisfying Hypothesis

(H4); then ξ is a stationary distribution for the process Zt solving (28).

Proof. It suffices to consider the case when ξ = λ is extreme. A simple calculation

shows that 〈λ, Lf〉 = 0 for all f ∈ D, and this implies the result by Ethier and

Kurtz, 1986 (Proposition 9.2, p. 239).

By the continuity of the sample paths of Z, we have in fact also

Pξ(Zt ∈ supp(ξ) for all t > 0) = 1.

Note that in the above, the support of ξ is taken in the topology of E = L2(Zd, ρ).

A consequence is that if λ and λ′ are two distinct extremal Gibbs distributions,

then the hitting time of supp(λ) ∩ supp(λ′) is a.s. infinite.
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Having constructed a diffusion solving (28), that is with generator L, it is

straightforward to construct a solution to the equation

Zt = Z0 +
∫ t

0

v(Zt)1/2dBt −
1
2

∫ t

0

v(Zt)∇H(Zt)dt,(33)

by a time change associated with the additive functional At =
∫ t

0
v(Zt)dt of the

process solving (28). This process will have as generator the operator Aξ defined

in (27).

7. Weak convergence

We now come to the main result of this paper. The implications of the theorem

have already been discussed in the introduction.

We shall need the following lemma:

Lemma 12. Let ξ ∈ G⊕(Π) be the limit of the measures πn as before, and suppose

that (H6) holds. Then for each of the functions on S, g1(x) = |Dx0H(x)|2, g2(x) =

|Dx0H(x)|3, g3(x) = |x0|2δ and g4(x) = D2
x0
H(x), there are constants Ci such that,

for some p > 2,

∫ ∣∣∣∣∣ 1
|Vn|

∑
k∈Vn

gi ◦ ⊕k(x)− 〈ξ, gi〉

∣∣∣∣∣
p

ξ(dx) ≤ Cin−p/2, i = 1, 2, 3, 4.

Proof. Observe that for each i, gi ∈ L2+ε(dξ) by (H3)-(H5), for sufficiently small

ε > 0. Moreover, gi is FV measurable. Fix now some i ≤ 4, and consider the

centered random field Yk(x) = gi ◦ ⊕k(x) − 〈λ, gi〉, k ∈ Zd under the probability

measure ξ. It is easy to see that the strong mixing coefficient of Y given by (17)

satisfies

αY (FU ,FW ) ≤ αξ(FU+V ,FW+V ),

where αξ is the mixing coefficient of ξ. Let p > 2, and recall that d is the dimension

of Zd. By (H6) we have, with u = 2,

∞∑
r=1

(r + 1)d(4−u+1)−1 |αY (r;u, v)|ε/(4+ε)
<∞,
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where

αY (r;u, v) = sup{αY (FA,FB) : dist(A,B) ≥ r,

2 ≤ |A| ≤ u, 2 ≤ |B| ≤ v, u+ v ≤ 4}

≤ sup{αξ(FA+V ,FB+V ) : dist(A,B) ≥ r, |A| = |B| = 2}

= αξ(r).

Consequently, by (Doukhan, 1994, p.26, Theorem 1), since Yk is translation invari-

ant and satisfies supk∈Zd ‖Yk‖Lp+ε(ξ) <∞,, there is a constant C such that∫ ∣∣∣∣∣∑
k∈Vn

Yk(x)

∣∣∣∣∣
p

ξ(dx) ≤ Cnp/2.

Dividing both sides by np finishes the proof.

Theorem 13. Let (H1)-(H6) hold, and suppose given a Gibbs distribution ξ ∈

G⊕(Π). For ξ-almost every boundary condition z (fixed once chosen), let

πn(dx) = ξ(dx | FV cn )(z)

be a corresponding scaling family of probability distributions on RVn , and suppose

that XVn,z, starting at πn, is a stationary Random Walk Metropolis algorithm for

πn with proposal variance σ2
n = `2/n; then as n→∞,

(XVn,z

[tn/
√
`]

: t ≥ 0)⇒ (Zt : t ≥ 0) on E, z [a.e. ξ],(34)

where Z is the diffusion solving (28) with Z0 ∼ ξ.

Proof. Consider the operator Aξ, with restricted domain D. The closure of this

operator generates a continuous contraction semigroup on L2(E, dξ) = D̄, namely

the semigroup associated with the solution of (33). By Lemmas 6 and 7, we have

for any sequence εn ↓ 0,

lim
n→∞

sup
(z,x)∈En(εn)

∣∣AVn,zf(x)−Aξf(x)
∣∣ = 0, ∀f ∈ D.

By Ethier and Kurtz, 1986 (Corollary 8.9, p.233), we have (34), provided we can

choose the sequence (εn) such that

lim
n→∞

Pπn

(
XVn,z

[tn/
√
`]
∈ En(εn) : 0 ≤ t ≤ T

)
= 1.(35)
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We shall do this as follows: since XVn,z is stationary under πn, we have

Pπn

(
XVn,z

[tn/
√
`]
/∈ En(εn) for some 0 ≤ t ≤ T

)
≤ (nT/

√
`)Pπn

(
XVn,z

0 /∈ En(εn)
)
.

Using the definition of En(εn) (Lemma 6) and the fact that XVn,z ∼ πn, this last

probability satisfies the bound

Pπn

(
XVn,z

0 /∈ En
)
≤

4∑
i=1

πn

[
x : x /∈ Ei,x,λn (εn)

]
+ 1S\E3,z,ξ

n (1)(z).

Now recall that πn(dx) = ξ(dx | FV cn )(z), hence for i = 1, 2, 3, the functions

τ in(z) = (Tn/
√
`)πn

[
x : x /∈ Ei,x,λn (εn)

]
are FV cn measurable. The limit τ i(z) = lim n→∞τ

i
n(z) is therefore measurable with

respect to the tail σ-algebra T = ∩WFW c , where the intersection is over all finite

subsets W ⊂ Zd. However, whenever λ is ergodic, T is trivial. It follows that τ i ≥ 0

is constant λ-almost everywhere. Now compute the estimate, by using Markov’s

inequality and Jensen’s inequality for conditional expectations

λ(z :
∣∣τ in(z)

∣∣ > c) ≤ 1
c

∫ ∣∣τ in(z)
∣∣λ(dz)

≤ 1
c

(Tn/
√
`)λ
(
x : x /∈ Ei,x,λn (εn)

)
.

Each of the sets Ei,x,λn (εn) is of the form

Ei,x,λn (εn) =
{
x :

∣∣∣∣∣ 1n ∑
k∈Vn

gi ◦ ⊕k(x)− 〈λ, gi〉

∣∣∣∣∣ < εn

}
,

where gi ∈ L1(dλ). Markov’s inequality implies therefore that

λ(z :
∣∣τ in(z)

∣∣ > c) ≤ 1
c

(Tn/εpn
√
`)
∫ ∣∣∣∣∣ 1n ∑

k∈Vn

gi ◦ ⊕k(x)− 〈λ, gi〉

∣∣∣∣∣
p

λ(dx).

≤ const(n/εpnn
p/2), p > 2,

by Lemma 12. If we now choose the sequence εpn = n−γ , where 0 < γ < p/2 − 1,

then we shall have that τ in → 0 in λ measure, and hence that τ i = 0, λ-almost

everywhere. Because ξ is a mixture of ergodic measures λ, the same holds ξ-almost

everywhere. Finally note that, except on a ξ-null set, we have z ∈ E3,z,ξ
n (1) for all

sufficiently large n, by the Ergodic Theorem (n depends on z). We conclude that

lim n→∞Pπn

(
XVn,z

0 /∈ En
)

= 0, z [a.e. ξ],
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and this establishes (35) as required.

We end with a remark on the strong mixing condition (H6). As the proof of the

previous theorem makes clear, Hypothesis (H6) was used (via Lemma 12) solely to

guarantee that the partial sums 1
|Vn|

∑
k∈Vn gi ◦ ⊕k converge in Lp(dλ) at a rate

faster than n = |Vn|, for each ergodic Gibbs distribution λ. The weak convergence

conclusion of Theorem 13 therefore holds whenever such a claim can be made,

irrespective of the presence or absence of phase transitions.
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