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ABSTRACT. This paper investigates the behaviour of the random walk Me-
tropolis algorithm in high dimensional problems. Here we concentrate on the
case where the components in the target density is a spatially homogeneous
Gibbs distribution with finite range. The performance of the algorithm is
strongly linked to the presence or absence of phase transition for the Gibbs
distribution; the convergence time being approximately linear in dimension
for problems where phase transition is not present. Related to this, there is
an optimal way to scale the variance of the proposal distribution in order to
maximise the speed of convergence of the algorithm. This turns out to involve
scaling the variance of the proposal as the reciprocal of dimension (at least
in the phase transition free case). Moreover the actual optimal scaling can
be characterised in terms of the overall acceptance rate of the algorithm, the
maximising value being 0.234, the value as predicted by studies on simpler
classes of target density. The results are proved in the framework of a weak
convergence result, which shows that the algorithm actually behaves like an

infinite dimensional diffusion process in high dimensions.

1. INTRODUCTION AND DISCUSSION OF RESULTS

For Markov chain Monte Carlo algorithms, a crucial question of interest is how
times needed to ensure convergence scale with the dimensionality of the problem.
This question is complicated by the fact that its answer is fundamentally affected
by the dependence structure between the one-dimensional components of the target
distribution.

For the Gibbs sampler on the Ising model, Frigessi et al. (1986) demonstrate that

for sub-critical temperatures, convergence times scale exponentially with dimension,
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whilst in the super-critical case, convergence is polynomial in dimension. This
result accords with the heuristic thought to hold in much greater generality; that
convergence times for algorithms tend to be polynomial or exponential in dimension,
according to the presence or absence of phase transition.

In this paper we shall concentrate on the Random Walk Metropolis algorithm.
Suppose 7, is an n-dimensional density with respect to Lebesgue measure, and
let ¢ denote the increment density of a symmetric Random Walk. The algorithm
proceeds iteratively as follows. Given X;, we propose a new value Y;;1 from the

density ¢(- — X¢). Now we set Xy = Y11 with probability

a(Xy, Yepr) = min{L, w(Yig)/7(X0)}

Otherwise we set X411 = X;. Therefore in the algorithms we are considering, the
proposals are fully n-dimensional, as opposed to other schemes such as single site
updating.

For the Random Walk Metropolis algorithm, a closely related implementational

problem to the above scaling problem, is the following. For an n-dimensional prob-

2

lem, and given (for instance) an n-dimensional Gaussian proposal with variance o7,

how should o, scale as a function of n? Furthermore, is it possible to characterise
optimality of o, in a way that can be practically utilised.

A partial answer to these two questions is given in Roberts et al. (1997)
where the problem is considered for the case where the proposal distribution con-
sists of n independent identically distributed components from an arbitrary den-
sity f say. In this case, it turns out to be optimal to scale the proposal vari-
ance as O(n~1), and the optimality criterion is most usefully expressed as scaling
the variance so that the overall acceptance probability for the algorithm (that is
Sz xgn Tn(@)q(z,y) oz, y)dxdy) is approximately 0.234.

With independent components, phase transition is necessarily absent, so this
result conforms with the phase transition heuristic mentioned above. Although in
special cases (such as Gaussian target densities) it can be seen that the optimal
scaling and acceptance rate criterion are rather robust to changes in dependence

structure, no general results of this type appear to be available.
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In this paper we generalise Roberts et al. (1997), giving a weak convergence
result showing that for suitably behaved sequences of target densities with par-
tial correlations of finite range, the algorithms behaves like an infinite dimensional
Langevin diffusion. The result holds under the scaling of the proposal by O(n™1),
as in the independent component case.

In the case where no phase transition occurs, it follows that the optimal variance
can be characterised as that which induces an overall acceptance rate of 0.234 as
in the independent component case.

On the other hand, in the phase transition case, the limiting diffusion is in fact
reducible, being unable to move between phases. Movement between phases for
the n-dimensional algorithm therefore happens at a rate slower than O(n=1). This
is consistent with, and provides evidence to support the phase transition heuristic
mentioned above.

In the phase transition case, the sequence of probability measures admits more
than one limiting Gibbs measure or phase. It can be seen that the limiting diffu-
sion then acts locally in a way which is independent of its phase, apart from its
speed measure. An interesting consequence of this is the possibility of empirically
diagnosing phase transition behaviour in high dimensional problems by monitoring

overall acceptance rates of the algorithm.

2. OVERVIEW OF RESULTS

We now describe in greater detail the results of this paper. Consider a collection
V,, consisting of n sites arranged on the lattice Z?. In other words, V,, is a finite
subset of Z% with |V,.| = n. Each site k € V, is given a real valued “colowr” xj, € R,
and we call the collection (zy : k € V,,) € RV a configuration. Viewed in this way,
a configuration is a function x : V,, — R.

Most probability distributions 7, on R"» can be approximated by the Random
Walk Metropolis algorithm X™ = (X]* : t > 0), in the sense that X' = 7, as
t — oo. In this paper, we discuss a scaling problem as the number of sites n tends

to infinity.
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More precisely, suppose at first the existence of an idealised system consisting of

all sites in Z? and a corresponding distribution 7 on
S =R = {configurations z : Z9 — R}.

The measures m, are viewed as the conditional distribution of 7, given the configu-
ration of sites zye = (z3 : k ¢ V;,). The n-th Markov chain algorithm X" depends
on a parameter o2 representing the variance of the Random Walk step. We shall
show how to choose 0, as a function of n, so as to optimise the speed of convergence
of the algorithm in the limit n — oo.

Such a problem was worked on previously by Roberts et al. (1997), who con-
sidered the case when 7(dz) = [],cza f(2r)dzy is a product measure. This corre-
sponds to assuming that the n sites in V;, take their colours x(k) independently of
each other.

In our generalisation, we take 7 as a “perturbed” product measure, i.e. the Gibbs

measure heuristically written as

(1) m(dz) = e Lreza Un(@) . H w(dzy).

kezd
Here, ;1 denotes a probability measure on R, and each of the functions Uy, k € Z¢
will be assumed to depend only on a finite number of neighbouring sites (x;) (finite
range interactions). Moreover, we will assume also that the set of functions (Uy, :
ke Zd) is preserved under spatial translations. Both these assumptions are often
satisfied in the statistical analysis of certain spatial models.

We now introduce some notation. Given a subset W C Z¢, we define the o-
algebra Fiy = o(x : k € W) and Fwe = o(a : k ¢ W). It is useful to generalise
the notation for the components z, of a configuration € S. Given a set W C Z<,
we let xyw = (xy, : k € W). Then we obviously have x = (xwe, xw).

Supposing now that z € S is some fixed “boundary” configuration, and V,, T Z,

we say that the family (,,) of distributions on RV" is a scaling family if
(2) mo(dz) =P[Xy, € dv|Xve = 2ve], onFy, =c(R"), X ~m.

Thus 7, is a regular conditional distribution of m with respect to Fy., and z is a

choice of boundary condition, that is a fixed configuration in S.
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We have so far assumed the existence of m, but this is an idealisation. Suppose

we specify a family IT of probability kernels on S as follows:
(3) I = (mw(a,dz) : W C Z* finite, a € S),

where the heuristic interpretation is that mw (a,dz) = P[Xw € dz | Xwe = awe].
For fixed z € S, the scaling family will again be assumed of the form (2), but 7
no longer appears as part of the definition. While this shift in perspective allows a
more realistic model (after all, MCMC is often done on R™, n < 00), we are now
faced with the added difficulty of identifying =, if this exists, so that (2) makes
sense in full. Furthermore, (2) may be compatible with several distinct probability
distributions 7= on S. This fundamental problem is addressed by the theory of
random fields.

From this point onwards, we shall assume given a fixed family IT as in (3),

satisfying the following consistency conditions:
(4) /Ww(z,dy)ﬂU(y,dx) =mw(z,dz), UcCW cz?,
which using (2) are simply
E[P[Xy € dz| Xy<] | Xwe = 2] = P[Xy € dz | Xy = 2.
A probability € on S is called a Gibbs distribution if
(5) £(dx | Fwe) = mw (-, dz), W C Z? (finite), z € S.

Thus Gibbs distributions are precisely the probability measures for which X ~ &
gives rise to the family of conditional distributions II. The set G(II) of Gibbs
distributions may consist of more than one measure. In this case, we say that there
is a phase transition.

We shall be interested only in those Gibbs distributions which are translation
invariant, i.e. £ o @y = ¢ for all k € Z%, where @, denotes the shift transformation
PrTj = Tjtk-

The form taken by the specification II will be important in the sequel, and we
now describe the notation we shall use. Let V = {0,v!,...,v™} C Z% be a finite

neighbourhood of site 0. We assume given a collection of functions

hi(z) = hi(Tp, Tpgots oo oy Thgom), x €S, k74,
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which satisfy the conditions hy o ®&; = hgy;. The formal sum
H(z)=- Z hi(x), z€S
kezd
is called the Hamiltonian. It is not a well defined function on S; however, note that
its partial derivatives Dy, H(x) are always proper finite functions on S, by virtue
of the imposed finite range condition. The Hamiltonian describes the energy of a
configuration z € S. If we restrict ourselves to a finite collection of sites W C Z¢
only, the corresponding natural quantity is the finite volume Hamiltonian
(6) Hy (zwe,zw) = — Z hi(zwe,xw), x,2€8, W Czl
keWw
Note that this is always a well defined function on S.

We can now specify a consistent family II by setting
(7) mw(z,dx) = C’V_V,IZ exp[—Hw (zwe, zw)]dzw,

where dryw =[], doy is Lebesgue measure on RWY, and Cw,. is a normalising
constant. Under Hypothesis (H1) in Section 2, the measures m,(-) = mw,(2,")
converge weakly, in a suitable topology, to some Gibbs distribution £(-), for “most”
boundary conditions z. The limit will generally depend on z — If z ~ £, we get that
limit.

Consider now, for a fixed set of sites V;, and boundary condition z, a Random
Walk Metropolis chain XtV”’Z,t = {0,1,2,...} for m,, defined in Section 4. As
shown in Roberts and Smith (1994), the law of X% converges as t — 00 to m,.
We shall investigate a diffusion approximation as n — oo.

It is shown in Section 3 that the discrete time generator of Xtv"’z can be written,
for any bounded differentiable test function f: RY» — R, z € RV,

A% (0) = 02 (5 3 @D 1)~ 3 b (@)D f)) + ol

i€V, 1€V,

where o2 is the proposal step variance for the algorithm Xg/ mE

In Section 4, we show that, if 02 = ¢2/n with £ a constant, then
(8) lim a’é—mz(z) =o(z), & a.e. x, and

(9) lim b, (z) = —%DIiH(x)v(m), fae x
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Here the function v is given by the formula

(10) olo) =260~ 5\Je(D3, 71 7)(0)).

where Z denotes the (&, : k € Z%) invariant o-algebra and D, H, D2 H are
partial derivatives of the Hamiltonian (these are well defined due to the finite range
condition).

It will also be shown that

i dm, Vi, 2z dmy,
11 o =E|1 X
(1) (o) = B[1A (1) [ 7 o)

is the overall or expected acceptance probability for the next proposed move from x.
Thus (8) states that the acceptance probability converges to a nontrivial quantity.
Combining (8) and (9) with the expression for the generator of X", we get

for € a.e. z,

. 1 v 1
(12) lim — AV»? f(x) = iv(:r) (Af(x) —VH(z) - Vf(:v))

provided that the test function f : S — R depends on at most a finite number of
coordinates. This is proved as Theorem 8.

Probabilistically, this result is interpreted as follows (see Sections 5 and 6). Sup-
pose that we run the Random Walk Metropolis algorithm X, ™* from stationarity,

that is with XS/ "% ~ m,. If Z; is the infinite dimensional Langevin diffusion solving

the SDE
(13) dZ; = v(Z)Y*dB, — %U(Zt)VH(Zt)dt, Zy ~ &,

then we have the weak convergence result X[‘t/;;’/zp] = Z; (Theorem 13), and the
function v defined by (10) appears as a speed measure for Z.

We were only able to prove the probabilistic interpretation above under one
further hypothesis, (H6). Unfortunately, this assumption precludes the existence of
phase transitions. However, we believe the result to be true independently of the
existence or not of phase transitions. The convergence of the generators (Theorem
8) is certainly true under phase transitions.

Note that the existence of Z; is nontrivial and requires certain assumptions.
In particular, the space S is too big as a state space to be useful, and we restrict
attention to the set of those configurations x : Z? — R satisfying a growth condition

(see Section 5). Under this condition, the set of admissible configurations becomes
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a separable Hilbert space. We shall see that every Gibbs distribution is, under
appropriate conditions a stationary distribution for Z. A study of the diffusion Z;
gives much insight into the scaling behaviour of the Metropolis algorithm.

Most interestingly, suppose that there are no phase transitions for the family IT
in (3). In that case, there is only one possible Gibbs distribution £, independently
of the chosen boundary condition for m,, and the invariant o-algebra 7 is trivial.
We can thus maximise the speed (and in particular the speed of convergence) of Z;

by choosing

i~ 238 / / D2, (2)¢(dw).

In that case, the value of v becomes approximately 0.234. Since v is also the limit

of the acceptance probabilities in (8), we get the following easy rule:

Optimization Rule: In the absence of phase transitions, choose the proposal
variance o2 = g/n, equivalently, tune o, so that the average acceptance rate
is approximately 0.234, and this will maximise the speed of convergence of the

algorithm for large n.

Suppose now on the contrary that there are phase transitions. Every Gibbs
distribution £ is now a mixture of extreme, ergodic Gibbs distributions A, in the
sense that there exists a probability v¢ on Gg (II) such that (see Section 2, Standard
Fact (iii))

€)= [ Anean.

The measures A are mutually singular, and this gives the following behaviour for
the process Z;. Every realisation of Z belongs to the support of some unique A
(according to the probability ~¢) for all time, with excursions from one measure A
to another A\’ # )\ being impossible.

Stated differently, the state space of Z; is no longer irreducible. Accordingly, the
Metropolis chain Xtv ™% must, when n is large, take much longer to move about its
state space RV» (which is still irreducible). Since the measure , approximates &,
it is multimodal, with “valleys” of very low probability. Consequently, the speed of

convergence to m,, when n is large, reduces dramatically, as the process is trapped

in each mode for a long time.
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In the presence of phase transitions, optimal scaling means that the acceptance

rate tends to zero with dimension.

3. HYPOTHESES AND (GIBBS DISTRIBUTIONS

In this section, we list three hypotheses which we shall make on the specification
IT and the scaling family given by (2), (3), and (7). We illustrate these by various
examples.
We begin with the hypothesis which underlies all subsequent developments. Be-
low, we shall give examples of specifications which satisfy it
Hypothesis (H1): Let V be a finite subset of Z? such that 0 € V and v € V
implies also that —v € V For each k € Z%, let h; : RVt* — R be C?, and
such that hy o @; = hr4;. We assume that the family of probability measures
IT defined by (2), (3) is tight in the local topology, and that the set Gg(II) of

translation invariant Gibbs distributions is nonempty.

Much is known about the applicability of Hypothesis (H1); a standard reference
is (Georgii, 1988). The local topology referred to above is that generated by all those
functions S — R which each depend on at most a finite number of coordinates. We
proceed to give some examples.

Example 1. Let p be an absolutely continuous probability measure on R and
set hi(z) = (dp/dx)(xzr). The specification II reduces to that of the product
measure ][, cza p(dry), which is the only Gibbs distribution. Thus there is no
phase transition.

Example 2. Suppose that hg(x) = U o ®(z) — log(du/dx)(xzk), where u is an
absolutely continuous probability measure on R and U : Sy — R is bounded. It
is a well known result (Georgii, 1988, Theorem 4.23) that Hypothesis (H1) then
holds. Phase transitions may occur. If we set Ug(z) = U o ®x(x), we recover the
heuristic description (1).

Example 3. Let (¢; : | € V) be a collection of real numbers with ¢y # 0 and
such that the matrix g;; = q|;—;| is positive definite. We obtain a homogeneous

Gaussian specification by setting

(14) hi(r) = qasei + qoad
140
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For y € (—1,1]4, let J(y) = Y vev Qv Cos(m Z?:l v;y;) be the discrete Fourier trans-
form of (¢q;). The following three cases are possible (Georgii, 1988, p.277).
o If [J(y)~'dy = oo, then G (IT) = 0.
o If g =0 for all [ # 0, then Gg(II) contains a unique Gibbs measure (no phase
transition).

e If ¢; # 0 for some | # 0 and [ J(y)~'dy < oo, there is phase transition.

Example 4. Let p(x,y)dy be the transition probability function of some time
homogeneous, Harris recurrent Markov chain on R, with stationary distribution m.
Let (M : —oo <t < 00) be a Markov chain with this transition function, and such
that My ~ m for all ¢t € Z. We shall view the path of M as a configuration on Z,

and define a family II by setting
7"'W(a, dﬂj) = ]P)<Mm+1 =Tmity.. - My_1=2p_1 |Mm =am, M, = an)a

for W ={j:m < j < n} CZ. For this case, the Hamiltonian is built up of

interactions of the form

M@=—O%MM1JMH%MMJHﬂ>

The following standard facts follow from Assumption (H1), and we shall make

use of these throughout the paper.

Standard Facts: (Georgii, 1988)
(i) When the set Gg(II) is nonempty, it is convex and its extreme points
consist of Gibbs distributions X\, any two of which are mutually singular
on S.
(ii) A measure X\ is extreme if and only if it is ergodic with respect to the
group of translations (S, : k € Z%).
(iii) Any Gibbs measure £ € Gg(II) can be written as a mizture of extremes:

there exists a probability e on Gg(II) such that
€0 = [ Anean
This measure satisfies

%6(d) = €(=: lim my, (=) € ), AC Go(ID)



FROM METROPOLIS TO DIFFUSIONS: GIBBS STATES AND OPTIMAL SCALING 11

(iv) Whenever A € Gg(II) is extreme, the following Ergodic Theorem holds
(Nguyen and Zessin, 1979): For any f € LP(d)), 1 < p < oo, let (V,,) be

an increasing sequence of finite subsets of Z¢ such that

V/
(15) sup [Vl

A < oo, V. = convex hull of V,,.

If the interior diameter of V,,,
(16) d(V,,) = sup{ radius of a sphere entirely contained in V,},
tends to infinity with n, then

lim — S fo@r=(\f) Aas. andin LP(dN).
n=e Vol (5
With a view towards applying the above ergodic theorem, we now make the
assumption that
Hypothesis (H2): The scaling family (2), that is 7, (dz) = 7y, (z,dz), is con-
structed from a sequence (V,,) which is increasing, such that |V,| = n, and
satisfies both (15) and d(V;,) — oo (with d defined in (16)). Moreover, let V'
be the neighbourhood in (H1); we set

OV, ={keZ'  k+V €V},

and we shall assume that [V + 9V,,| / |[V,| < Cn~ for some a > 0.

The condition involving « above restricts the growth of the boundary of V,,. It is
clearly satisfied if the sets V,, are approximately cubes, for example.

The third hypothesis we make will be useful in Section 4.

Hypothesis (H3): For every m € Z<, the second and third order derivatives

of h,, are bounded:
||Dmirjhk||oo + ||Drzmmznhp||oo < oo, ik, l,mn,p€ z°.

Note that (H3) is satisfied by Example 3 and may often hold for Example 2. We
believe that this condition can be relaxed considerably while keeping the results of

this paper intact, but for simplicity, we do not pursue the matter here.

Hypothesis (H4): Every Gibbs measure £ € Gg(II) satisfies, for some § > 1

/|xk|25§(dx) <0, kezd
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This hypothesis implies that, for any probability measure p = (p : k € Z%), the
Gibbs distributions £ satisfy

f(m: Zpkxk|2<oo> =1

kezd
As a result, we can restrict attention to a much smaller class of admissible configu-
rations x : S — R, namely those which belong to E = L?(p). This will become the
state space for the diffusion approximation of Section 5. The higher order moments
will be used in conjunction with (H6) below, when we prove Lemma 12.
Example 2 revisited. Suppose that [z u(dx) < oo holds, then (H4) holds

also. Indeed, we have

/ el £(da) = / £(dz) / lxl® 7y 2, )
< / £(dz) / e ? Vel pi(diz,)
< ellUslle / 2| p(day) < oo.

Example 3 revisited. Here, (H4) holds always since

sup/ il iy (2, da) = Sup/ oy 7 Zvev wvmimie—a0 @) gy — € < 00
z z
so that

[0 ¢tdo) < [ etz sup [ foul® mypy (2, o) = € < o0,

The following hypothesis is to be used in Section 5 for the existence of the infinite
dimensional diffusion Z in (13). Note that this is satisfied by Example 3, and by
Example 2 when (H3) holds.

Hypothesis (H5): For each k € Z?, the function hy(z) given in (H1) satisfies

the Lipschitz and growth conditions (with Euclidean norm)
ma D () — Do i@l < C -l —yllgy .y € BY
mas | Dy, hi(2) gy < €+ (14 [y ), o € BY

In Section 6, we shall prove the weak convergence (Theorem 13) referred to in

the introduction. We shall use an assumption that the limiting Gibbs distribution
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& is strongly mizing. There are various definitions of mixing in the literature. Here
we use the following (for standard results on this topic, see Doukhan, 1994).
Let U, W be two subsets of Z?, and consider the corresponding o-algebras Fy;,

Fw. The strong mixing coefficient of £ is the number

ag(Fu, Fw) =sup{|€E(ANB) —{(A)¢(B)| : AC Fy,B C Fw}

= sup{|Cov(f(Xv), g(Xw))[ : [f],]g] < 1}.

(17)

Note that the coefficients can be calculated solely from the specification II. We

shall use the following assumption

Hypothesis (H6): There exists ¢ > 0 such that

S0+ 127 ag ()] 4T < .

r=1

Here a¢(r) = sup{cae(Fatv, Fpyv) : dist(A, B) > r,|A| = |B| = 2}, and the

distance between sets is defined as
dist(A4, B) = min{mé%j( la; — bi| :a € A,b € B}.

Assumption (H6) is only used once, in the proof of Lemma 12. It stops the

existence of phase transitions.

4. RANDOM WALK METROPOLIS ALGORITHM

In this section, we assume given the sequence 7, (dx) of probability distributions
on RV» where |V,,| = n. The dependence of 7, on the boundary condition z shall
be temporarily ignored, and we shall identify RY» with R™.

Forn =1,2,3,..., consider the Random Walk Metropolis algorithm for 7,,, with
proposal step

Xt ld Xt —|— O'n(Rla .. .,Rn),

where R = (R;)$2, is a sequence of independent, identically distributed random
variables with symmetric distribution and unit variance. The real number o, is
used to control the variance of the proposal step generated from R. We shall

assume that the variables R; have at least four finite moments.
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Lemma 1. For any suitably bounded and differentiable test function f : R™ — R,
the discrete time generator of the Random Walk Metropolis chain for a distribution

T, with Lebesgue density
Tn(T1, .., Tp) = e Hn(@rnzn) oy >

is given, as o, — 0, by Taylor’s theorem

—o? é b (x)D; f( % i ) + o(no?)
where
(18) ali(x) = E[1 A e K0 (@)]
(19) bi(z)=E {DZ—HH(:E + o, R| R = 0)e Kn@): K (2) > 0]
and
K!(z) = Hy(x +0,R|R; =0) — H,(z)
0) = onZD Hy, ()R, + a > Dy Hy(z)R,R,

r#i r,S8F#1

n

1 .
+ 60'2, Z DrstHn(x + Zn)RrRth

r,8,t#£1

with some random variable Z such that | Z,| < ||lo.W]||

Proof. Let F(dy) = q(y)dy be the distribution function of R;. The generator of
the n-th chain is

Apf(z) = E[f(x +opR) — f(x); 1 Amp(x + O'nR)/ﬂ'n({IJ):|

:EliD z)onRi + = ZDUf 2)o2R;R;

i=1 3,7=1

— (Hn(x—ﬁ—onR)—Hn(x))
+o(on |R[*); 1 e

— anZDif(m)/waL(y)dF(y)

n

1102 S Dyt // yz -+ (y, 2)dF (y)dF (2) + o(no?)

7,7=1
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Here the coefficients are
i) = B[ el |y
- F l:l Ae” (Hn(90+<TnR \ R1=y)—Hn(37)):|

where the notation H,(z + 0, R| R; = y) means that the variable R; is replaced by

Yy, L.e.
Hy(w 4+ 0 R | Ry = y) = Hy(w1 + 0 Ba, o2+ 0ng 2 + 0 R
Similarly,

=K |:1 ANe” (Hn(m+anR|R7:—y,Rj_z)Hn(m))]

To express the generator in terms of o,, we begin by expanding the functions ~/,
v in powers of y, z. Recall that if g is some differentiable function on R, the the
function z — 1 Aexp(—g(z)) is also differentiable, except at a countable number of

points, with derivative given Lebesgue almost everywhere by the function

—d —9(2) i
il N omtl) g (2)e if g(z) >0
dz

0 if g(2) <0
Now take ¢g(z) = H,(x + o, R| R; = z); for almost every x; € R, as o, — 0,
~ (y) =E[1Ae” (Hn(w+<7nR|R11=0)Hn($)>]
— (Owy)E| DiHo(z + 0nR| Ry = 0) - e~ (Hn oo RIR=0—Hu (@),
Hy(zx+0,R|R; =0) — H,(z) > 0| + o(c?)
Also
(w,2) = B[ p e (Fnton R Ry Ri== )] | o(1)

Since (R;) is iid with zero mean and unit variance, we then get (18), (19) and (20)

as o, — 0. O

Note that (18) gives the acceptance probability for a proposed move from x

(compare with (11)).
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5. IDENTIFYING THE DIFFUSION LIMIT

Recall the Taylor series for K! (z) given in (20). We shall show in this section
that, if 02 = ¢/n, we have K} (z) = (s(z)N+3(*a(z), where N is a standard normal
variable. This will allow the identification of the limiting diffusion coeflicients (18)
and (19). We shall do this for the scaling problem using Lemma 1, with H, (z) =
Hy, (zve,wy,) and a sequence R = (Ry : k € Z%).

Recall the definition Hy (z) = 7 i, ho(x) in (6) For each § € G (IT), we have
by (H4, H5)

(21) s(§) = <j/(l?xof1v(x))2£(dw))]/2 < 00,

Lemma 2. For every extremal Gibbs distribution A € Gg(Il) and z [a.e. &], if
(H1,H2,H},H5) holds, then

1
Z D, Hy, (zve,zy,) - Ry = N(0,1), = [a.e. Al

(22) Gu(z,z):= SR
keV,

Moreover, if F?"(u) = P(Gy(z,z) < u), set

By (z) = Z |D5EkH(‘T)|2’ In(z) = Z |DwkH(:'E>|3’

keVy kEV,

and Ty (x) = [B,(z)/ns(N\)?]/2. Let 6 be as in (H4), and set

1 N 1 A\
M) = (3 X a4 (2 5 )

keV+V, keV+V,

If we take 0 < 0 < a(1 —1/0)/2 (which is always possible, o begin given in (H2)),

then there are constants Cq1 and C3 such that

sup [F 7 (u) — ®(u)| < <Fn<x> v 1) P (@)™t = 1] + CaL () / Ba(2)
(23)

+ Cs M, (2, 2)n?0=2(=1/9) 4 =0 /\/or7
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Proof. If k € V,,\0V,, then
DzkHVn (ZVTf,LUVn) = ka Z h((Ej,LCjJrvl ey ijrvm)
JEVR
= Dfohk(:ck, Lhtoly- .- ,$k+v7rt)

+ 4+ Dwvm hy—ym (l‘k_vmkaﬂ)l,vm, s ,.’L'k)

= Dy, hii(x)

i€V

= (Z Dy h_;) o @p(x)

i€V

=D, H o ®p(z) = D, H(x)
independently of the chosen boundary configuration z. Define

Sn(x) = By(z)™"/? Y Dy, H(x)Rs
keVy,

and

DI H Cy _Da: H )
S()\)\/ﬁkeza;/n[ WHv, (zve, zv,) WH ()] Ry,

so that

m k;ﬂ Dy Hy, (2ve, v, )R = T'n(2) S () + Qu(z, @)

Then since I',,(z) > 0, the triangle inequality gives

sup
u

P(Fn(x)Sn(x) < u> — B(u)

P(5,(0) < w/Tu(0)) ~ /T (0)

< sup [P(S, (@) < v) = (0)| + (L Tu(a)) [1 = Tu(@) |

< sup +sup [®(u/Tn () — ®(u)]

By the Ergodic Theorem (Standard Fact (iv), Section 2) and (H4,H5) which ensure
integrability, we have T';, — 1 [a.e. A]. Moreover, S, (z) = N (0,1) by the Central
Limit Theorem. Applying the Esseen bound (Petrov, 1995, Theorem 5.7, p.154)

we get a constant Cy such that

sup [P(Sn () < u) — ®(u)] < Ciln(x)/Ba(2)*.
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Now using (Petrov, 1995, Lemma 1.9, p.20), we have

sup | ;" (u) — ®(u)| < sup

P(Fn(m)Sn(w) < u) — d(u)
+P(|Qn(z,2)| > n7") + 070 /V2r,

whereas the Chebyshev inequality gives

2
P10zl >0 ) <n8( S X (Do, g, — Doy IR
keoV,

n20

Al S Do Hy, (2ve,2v,) — Doy H(z)|?,

K€DV,
as the sequence (Ry) is IID with zero mean and unit variance. Using the Lipschitz
bound from (H5), and since |V,,| = n, we find a constant C5 such that
PQu ) >0 ) < Y G+ ).
n

keV+40oV,

From Hélder’s inequality, taking § > 1 as above,

Z % = Z Ly ov, (K)z;

keV 4oV, keV+0oV,
1-1/5 1/6
g( 3 |1V+avn<k>|5/<‘*‘”) ( 3 |zk|2‘5>
keV4+V 4V, keV4+V 4V,
1/6
—|V+8Vn11/5< 3 |Zk|26) .

keEVHV+V,

Consequently by (H2), there exists a constant C3 such that

IV + 0V, 1‘”5M (
\2 "

< an%_o‘(l_l/é)Mn(z, x).

P(|Qn(z, )] >n~ 1) < C’2n26<

2, 1)

Furthermore, by the Ergodic Theorem, (H4) and |V,, + V| /|V,,| — 1 due to (H2),
we get for z [a.e. A|/L*(d\) and 2 [a.e. £]/LY(dE),

s 10 = ([l @)+ ([lo® i)

Thus we see that P(|Q,(z,z)| > n~!) tends to zero, and consequently it follows

both the weak convergence in (22) and the bound (23). O

1/6
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The second sum in the expansion of K! can also be treated by the ergodic
theorem. Due to the finite range condition in (H1), we have D, . Hy, = 0 for

“most” pairs u,v € V,.

Lemma 3. For each extremal Gibbs distribution A € Gg(II), if (H1,H2,H3) holds

there exists a real number a(\) such that, as n — oo, for any z € S,

1
Vol(z,2) == — Z Dy, Hy, (2ve,zy, )RiR; — a(X), x [a.e. ], [a.s. P].
i,JEVn

Moreover, there exists a constant Cy such that

< 5/2}.

Proof. Since R; is independent of R; when i # j, only the diagonal terms will

B(|Va(z,) —a(N)| > €) < C/en on {w: |2 3 D2 H(z) — a()
( ) foels

1€V

actually matter. Moreover, by the bounded range assumption (H1), we can write
Z Z wiwis, Hv, (2ve, oy, )RiRiy .
jev iev,
Note that the variance of each term in the second (inner) sum is bounded, uniformly
inz, z € S by (H3). When j # 0, the Strong Law of Large Numbers holds and
Chebyshev’s inequality gives

1
P(|
n

Z D$i$i+j HVn (')RiRH—j
i€V,

1
g ) < 3 2 Do H O

i€V

S Cl /62717

where (' is some generic constant. For j = 0, we write

- Z D? Hy, (2ve,av,)R Z D2,

ZE‘/n lEV,L
Z D3 H(x)(R; - 1)
16\/
1
n D3 Hy, (2vg —D? H(z) |R?
+ n e;/ ( i Va (an,$V7L) x; ($)> 7

of which both the second and third sums tend a.s. to zero, by the Strong Law
of Large Numbers for independent random variables. Moreover, Chebyshev’s in-

equality gives a similar estimate as before. For the first sum, the Ergodic Theorem
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gives

(24) lim % Z D2 H(z)= (\D2 H)=:a()), = [ae. \/L*(d)).
1€V

Finally, let us consider the third term in the definition of K} given in (20).

Lemma 4. If (H3) holds, then for any sequence (Z!), as n — oo

1
In(z,x) = 37 g Dy, w,e Hy, (2ve, vy, + Zn) - Ry R;Ry — 0, [a.s. P].
r,8,t#1

Moreover, P(|J,(+)| > €) < Cs/e*n for some constant Cs.

Proof. By the nature of Hy, , for fixed n the sum has at most 6 |V|*n nonzero
terms. Hence by (H3), when divided by n?/2 it tends to zero by the Law of Large

Numbers. The estimate comes again from Chebyshev’s inequality. O

For a given extreme Gibbs distribution A € Gg(II), we shall now relate the

numbers s(\)? and a()).

Lemma 5. For every extremal Gibbs distribution A € Gg(I1), the numbers s(\)?
and a(X) defined by (21) and (24) are equal.

Proof. Since the function hy only depends on xjiy, we shall condition on Fyye,

where W =V 4+ V.
SO0 = (A, (DJOH)2>
=(\ (Z Dw,ih_i>2>

eV
- / A(dz) /R _mw (2, dr) (; DIihi(x)>2
= /)\(dz) /RW C’Z_,‘ld,eHW(ZW”’ZW)<ZDx,:h—i(I)>2d$W

eV

Now using integration by parts, since

’e*HW(ZWC*’”W)Dmh—k(fE)} —0 as || — oo,
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we find that
S()\)2 _ —/)\(dz)/ C;%}VDIO (ezjew hj(ZWc,acw)) ZDaﬁlh*z(l’)de
RW ’ :
i€V
_ /)\(dz)/ Czrl/[/e_HW(ZWC’wW)<Z D?Ehz(x)>dxw
rRW ‘ ¢
i€V
= /)\(dz) /RW ww(z,dx);/DioH(x)
=a(})

Combining the last four lemmas, the limiting diffusion coefficient becomes

(25) ’U(LL‘) = lim aif(zv7§7mvn) = E(l A e—%ﬂa(z\)—@s(A)N) 2 [a'e. )\]

We shall need a bound on the rate of convergence:

Lemma 6. Let v(z) be defined as in (25), and choose any sequence €, | 0. Then
lim sSup |aif(zv7fa an) - U(.’E)| =0,
N0 (z,2)EEn (en)

where the set E,(e) C S X S satisfies
En(€) = Ey™(e) N Epe) N Ep™ (1) N By®< (1) N By (e),

and using notation defined in Lemmas 2 and 3,

By = {1 Bula) = s < ],

B2 = {1 1nle) — (1w 1Y) < o},

N0 ={oi |1 S fal® - (e < e}
keV,+V

E5% (¢) = {x: % > D2 H(x) - a()) <e}.
kev,

Proof. We work with a fixed A and put o = ls(A), p = ga()\). In the notation

defined in Lemmas 2, 3 and 4, we have

Ki(zz) = U(Gn(z,x) + %[Vn(z,x) —a(N)] + 650V Jn(z,x)) + p.
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Letting HZ* denote the CDF of (K!(z,z) — u)/o, it follows through integration

by parts that

|aff(zv75,xvn) - v(x)| = ‘/ 1A e*"“Jr“(dHﬁ;’w(u) — d@(u))‘

/ (HZ"(u) — ®(u))oe 7" Hdu
{u>—p/o}
< osup [Hp" (u) — ®(u)].
From (Petrov, 1995, p.20) we get for any choice of 5 > 0
sup | H2(u) — &(u)

< Sl;p |F2(u) — ®(u) +P<|Vn(z,x) —a(N)] > Qﬁs(/\)ﬂ)

280~ + 6302
V2T '

Now applying the convergence estimates from Lemmas 2, 3 and 4,

+P<|Jn(2,x)| > 665()\)/€2> + s()\)

sup [H (u) — ®(u)]|
u

< (Fn(:c) % 1) Tn(@) ™ = 1| + C11(2)/ B (2)¥/? 4 Cs M, (2, 2)n? (1 =1/9)

2 A 2071 46072
—0 - s
FrVER gt T Csemsoom TV T g

provided x € EX**(Bs(\)£~!). Assuming furthermore that z € EL®A(Bs(A\)f~1),
we have |T,,(z) — 1] < const - 8. If also x € E2%*(B3s(\)¢~1), then

Iy(2)/Bn(2)?/? = n=1/2 [lfn(x)} / FBn(w)r/Q

n

A | Dao HI?) + Bs(\) e
a(A) — Bs(A)e-t

< n—1/2<
Finally, when x € E3**(1) and z € E>*¢(1),

M, (z,2) < (()\, |z0|*°) + 1)1/5 + (<g, |z0[°) + 1)1/5.

Hence, for given €, | 0, we can take 5 = €,¢/s(\), and we shall have the stated

uniform convergence. O

To get the limiting drift, we can proceed in exactly the same way.
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Lemma 7. For any sequence €, | 0, define the sets E,(€) as in Lemma 6, then

B 1
by (zve, Ty, ) — §DmH(x)v(x) =0.

lim sup
N=00 (2,2)EEn (€n)

Proof. Consider the expression for bl (zye, v, ) in (19), and note first that

lim D,,Hy, (2ve,zv, + " Y?R|R; = 0)

n—oo

= lim <Dac¢HVn (ZV;;’ IEVn) + n~1/2 Z Do, Hy, (Z\/Tf, an)Rr
r#£i

2
+— > Duwa Hy, (2vgay, + Z)R,»Rs)
r,8F£1
= DﬂclH(x)v

because the last two sums have respectively at most |V| and [V|> nonzero terms.
Moreover, the convergence is uniform in (z,z) due to (H3). By Lemmas 2, 3 and

4, we find that

lim b, (zve,2v,) = Dy, H(z)E(e™™; M > 0),

n—oo
where M ~ N(p,0%) and p = (£2/2)a(\) = 02 /2. Using a similar technique as in
Lemma 6, the limit is uniform in (z, ), along any sequence E,(e,) with €, | 0.

Finally, by a standard calculation, the relation between p and o implies that

IE(I A eM> =2E (eM; M > 0) =29 <g/2).

Comparing this with (25) gives

. 1
lim b, (2ve, 2y, ) = §D$1H(I)’U(3})

n—oo

O

Lemmas 6 and 7 immediately yield the form of the limiting diffusion operator
we were aiming for:

(VH(2), V) f(z) + %A f@)), 2 [ae. AL

(26)  Axf(z) = 202®(—Ls(N)/2) <_%

Here VH (x) denotes the vector in S with components k +— D,, H(z). The above

is true for any extreme Gibbs distribution A € Gg(II). If we take an arbitrary
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¢ € Gg(II), then according to Standard Facts (i) and (iii) in Section 2, we get &

a.e.

1) Act@) =200( - VEDLA D@ ) (-5 (VHEL ) )+ 5A1@))

We summarise with a theorem.

Theorem 8. Suppose that £ is a Gibbs distribution belonging to Gg(II). Given
(mn) a scaling family (2) with boundary condition z and satisfying (H1, H2, H3,
Hj, H5), let AV»* be the generator of the Metropolis algorithm Xtv"’z associated
with m,. If f: S — R is any bounded differentiable test function which depends on

at most a finite number of coordinates, then
T (n/P)AV [ (@) = Af(x), (2,) a.e. €€

Example 2 revisited. Let u(dx) = f(z)dz; equivalently, hy(xr) = —log f(zk),

and hence
kaH(ZC) = _ka ZIOg f('rj) = f/(xk)/f(xk)
J

Since there is no phase transition, the o-algebra 7 is trivial. Thus

$(6) = ( / (D%H>2d§>1/2

) </ €(dx)/f/(gﬁo)Q/f(fo)2 : f(wo)dx0> :

1)

We can write this in terms of a random variable X ~ f(x)dz, and then we get
52 = ]E(f’(X)/f(X))Q. This agrees with (Roberts et al., 1997).
Example 3 revisited. For the Gaussian specification (14), we have D,  H (z) =

/2

qo, a constant. Consequently we must have s(¢§) = qé , and the speed measure v

of (10) is also constant, given by
— 92 £y

The speed is maximised for /=~ 238 / qé/ 2, which is one quarter the variance of the
Gaussian product measure. Interestingly, this is independent of the existence or

nonexistence of phase transitions.
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Example 4 revisited. Recall that M; ~ m is a Markov chain with transition

probability p(x,y)dy. When p(z,y) is sufficiently smooth, we have

D, H(x) = —<D2P(9C1,!L“0)/P(9C1,$0) + D1P(9CO7$1)/P(CC07$1)>.
Then

2
$% = E(DmOH(M_l,MO, M1)> .

6. THE LIMITING DIFFUSION

In this section, we shall study properties of the diffusions associated with the
operators Ay given by (26), and more generally the operator A of (27). We first
show the existence of such processes.

Let p = (pr : k € Z%) be the probability measure on Z¢ satisfying

p({k}) == pr =€ M/ > " el
jezd
We shall write E = L?(Z%, p), and denote the corresponding Hilbert space norm by
[I-Il o The space F is a separable Hilbert space, and will be taken as the state space
for our diffusions. Accordingly, we will focus only on Gibbs distributions which
satisfy Hypothesis (H4) of Section 2. Note that RV» C E in a natural way, so that
the Metropolis chains (X"##) can all be taken to evolve on E.

Since E is a Hilbert space, it admits the existence of a Brownian motion (B)
Consequently, by the Hilbert space version of Ito’s formula (e.g. Métivier, 1982), if
the SDE

1 t
0

has a solution, it can be taken as a Markov process on F with generator

1

L) = 5 30 D% f() ~ 3 3 Do H@)De 1), [ € GYE)
kezd kezd

We prove this under Hypothesis (H5).

Proposition 9. Under Hypothesis (H5), if E(Z3) < oo, there exists a unique con-
tinuous, nonexplosive Markov process Zy on E which satisfies (28), and for each

finite T, sup,cp E ||ZsH,2> < 0.
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Proof. The result follows from (Da Prato and Zabczyk, 1996, Theorem 5.3.1, p. 66)

provided we show that the function k — D,, H(z) satisfies the linear growth con-

dition

(29) IVH ()], < C1(1+ [l=]],,)

for some constant C7, and the Lipschitz condition

(30) IVH(z) = VH(Y)|, < Ca |z = yl,

for some constant Co. To prove (31), note that the measure p satisfies

M, := sup Sup pp/priv < 0.
kEZd vEVHV

Then we have

, 1/2
IV H ()], = (Z pi Dy H ()| )

kezZd
20 1/2
= (Z Pk ZDrvhkfv(x) ) )
kezZd veV

so that by (H5), for some constants C’, C”. Recalling that V = {0,v!,...,v™},

1/2
< (Z o CIVI S (1 1@k . ,xkvw)nf)

kezd veV
1/2

1/2
=" (1 F D Y Ty Ty o xi_wvm) :
kezd veV

< c’ ( Z Pk Z |:1 + ||(1'k—va Tp—vtoly--- awk—v—&-v”")

keze veV

and setting V — V = {v — v’ : v,0" € V}, this can be written

1/2
SC/’(1+|V| Z ZpksciJr,,)

reV-V kezd
1/2
<"1+ M,|V]? 2\
< + M, V| Zpkxk
kezd

<G+ lzl],),

as required in (31). The proof of (30) is virtually identical and is left to the

reader.

O
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Below, we shall need to identify a core for the generator L.

Lemma 10. Let C3*(RY) = {f : RV — R,
extremal Gibbs distribution \ € Gg(II), the set

Dkaoo < 00,k =1,2,3}. For any

D={feC%: f depends only on a finite number of coordinates}

— U CS,b(RW)
W finite
is dense in L*(E,d\), and is a core for the strong infinitesimal generator of Z

acting on L*(E,d)\).

Note that D separates points in E. Indeed, given two configurations x, y such

that [|z]| ,, [[yll, < oo, if # # y there exists some function g € D such that g(x) #
9(y)-

Proof. We show first that D is dense. For a given finite set V,,, let \y; be the
restriction of A to RY». The space C**(R"") (which is contained in D) is dense
in L2(RY",d)\y, ). Note that L2(RV",d)\y, ) is naturally imbedded into the space
L?(E,d)). If a function f belongs to the latter, the martingale convergence theorem
implies that f, = A(f | Fv,) converges to f in L?(E,d)\) whenever V,, T Z¢. But
fn also belongs to L?(R"», d\y;, ), and hence can be approximated by a function in
D. Thus f itself can be approximated by a function in D and therefore this set is
dense.

To prove that D is a core for L, let (73) denote the operator semigroup of Z,
acting on L?(E,d)\), and suppose that £, with domain D(L£), is the associated strong
infinitesimal generator. We will show that D C D(£) and that T} : D — D(L), which
establishes the claim by Ethier and Kurtz (1986), , p.17, prop. 3.3.

It is known by Ito’s formula that the process

M, = [(Z) — [(Zo) - /0 Lf(Z.)ds

is a local martingale for each f € D. Moreover, the solution process Z satisfies for

each finite T

2 . 2
(31) sup B || Z||, < oo if ||z[|, < occ.
s<T
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Let T,, = inf{s > 0 : ||Z,|, > n}; by the continuity of the sample paths of Z,

Miar, is a bounded martingale, and for ||z| , < 00, we therefore have

E.f(Znr,) = f(2) + Ea / LF(Z) L, 50 ds.

Now f is bounded and continuous on E, and in case f depends only on the coor-

dinates xy, we have by (H5) some constant Cy such that
(32) ILf(@)l, < Cr(1+ [lz]lgwv)-

Thus we have |Lf(Zs)1(1,>s| < Cr(1+ || Zs|[gw+v), which by (31) is integrable.

Dominated convergence now gives

E.f(Z) = [(x) + / B, [Lf(Z.))ds.

Moreover, from this it follows easily, by (31), (32) and the continuity of 2 — Lf(x)
on F, that

lim [ A(da) [t (B, f(Z) — f(x) — Lf(2)]" =0,

t—0

which establishes that D C D(L£). Similarly, it is clear that T3 f(x) = E, f(Z;) also
belongs to the domain of £. This ends the proof. O

As a direct implication of the above lemma, we get

Proposition 11. Let £ € Gg(Il) be a Gibbs distribution satisfying Hypothesis
(H4); then & is a stationary distribution for the process Z; solving (28).

Proof. Tt suffices to consider the case when £ = X is extreme. A simple calculation
shows that (A\,Lf) = 0 for all f € D, and this implies the result by Ethier and
Kurtz, 1986 (Proposition 9.2, p. 239). O

By the continuity of the sample paths of Z, we have in fact also
Pe(Z; € supp(€) for all t > 0) = 1.

Note that in the above, the support of ¢ is taken in the topology of E = L%(Z%, p).
A consequence is that if A and X are two distinct extremal Gibbs distributions,

then the hitting time of supp(A) Nsupp(\') is a.s. infinite.
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Having constructed a diffusion solving (28), that is with generator L, it is

straightforward to construct a solution to the equation

t 1 t
(33) Zi = Zy +/ v(Z)Y%dB; — 5/ v(Z)VH(Z,)dt,
0 0

by a time change associated with the additive functional A; = fot v(Zy)dt of the
process solving (28). This process will have as generator the operator A, defined

in (27).

7. WEAK CONVERGENCE

We now come to the main result of this paper. The implications of the theorem
have already been discussed in the introduction.

We shall need the following lemma:

Lemma 12. Let £ € Gg(II) be the limit of the measures 7, as before, and suppose
that (H6) holds. Then for each of the functions on S, g1(x) = |DIOH(x)|2, g2(x) =
Dy H(2)|?, gs(z) = |z0|* and g4(z) = D2 H(zx), there are constants C; such that,

for some p > 2,

/

Proof. Observe that for each i, g; € L*>T¢(d€) by (H3)-(H5), for sufficiently small

P

1 .
] 2o 90 @k(a) — (6.9 €lde) < Cn ™% i=12,3.4
" kev,

€ > 0. Moreover, g; is Fy measurable. Fix now some 7 < 4, and consider the
centered random field Yy (z) = g; o @r(x) — (), i), k € Z¢ under the probability
measure £. It is easy to see that the strong mixing coefficient of Y given by (17)

satisfies

ay (Fu, Fw) < ag(Futv, Fw+v),

where ag is the mixing coefficient of £. Let p > 2, and recall that d is the dimension
of Z%. By (H6) we have, with u = 2,
(oo}

Z(T + 1)d(4—u+1)—1 ‘Oéy(’l“;u, U)|e/(4+e) < o0,

r=1
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where
ay (r;u,v) = sup{ay (Fa, Fp) : dist(A4, B) > r,
2<|A4| <u,2<|B|<v,u+v<4}
< sup{ae¢(Fayv,Fp+v) : dist(4,B) > r,|A| = |B| = 2}
= ag(r).

Consequently, by (Doukhan, 1994, p.26, Theorem 1), since Y} is translation invari-

ant and satisfies supyeza [|Yi| pore(e) < 00,, there is a constant C' such that

/ > Vi)

keVy,
Dividing both sides by nP finishes the proof. O

p
¢(dx) < CnP/2,

Theorem 13. Let (H1)-(H6) hold, and suppose given a Gibbs distribution £ €

Gg(Il). For &-almost every boundary condition z (fixed once chosen), let
() = (e | Fug)(2)

be a corresponding scaling family of probability distributions on RV», and suppose
that XVn? | starting at m,, is a stationary Random Walk Metropolis algorithm for

Tn with proposal variance o2 = (2 /n; then as n — oo,

(34) (X[‘t/:;’/zﬁ] :t>0)=(Z;:t>0) on E,z [a.e. &,

where Z is the diffusion solving (28) with Zy ~ &.

Proof. Consider the operator A¢, with restricted domain D. The closure of this
operator generates a continuous contraction semigroup on L?(E,df) = D, namely
the semigroup associated with the solution of (33). By Lemmas 6 and 7, we have
for any sequence €, | 0,

lim sup ‘Av"’zf(ac)—Agf(xﬂ =0, VfeD.

n=0 (2,2)eEn ()
By Ethier and Kurtz, 1986 (Corollary 8.9, p.233), we have (34), provided we can

choose the sequence (¢,,) such that

. Vin,z . _
(35) lim Py, (X[m/m € En(en):0<t < T) =1.
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We shall do this as follows: since X "»** is stationary under 7,, we have

P, (X[j;fm ¢ E,(ep) for some 0 <t < T) < (nT/VO)Py, <X(‘)/"’Z ¢ En(en)>.

Using the definition of E,(e,) (Lemma 6) and the fact that X" ~ m,, this last

probability satisfies the bound

P, (X(Y"’Z ¢ En> < Zﬂ'n [3«” x ¢ E;x)\(%)} g ggeny(2)-

=1

Now recall that 7, (dx) = £(dx | Fye)(2), hence for i = 1,2, 3, the functions
m(2) = (Tn/VOma[o s 2 ¢ By (en)]

are Fy. measurable. The limit 7°(2) = lim o7 (2) is therefore measurable with
respect to the tail o-algebra 7 = Ny Fyye, where the intersection is over all finite
subsets W C Z?. However, whenever ) is ergodic, 7 is trivial. It follows that 7¢ > 0
is constant A-almost everywhere. Now compute the estimate, by using Markov’s

inequality and Jensen’s inequality for conditional expectations
. 1 .
ANzt |Th(2)] > ¢) < E/’T:L(Z)’ A(dz)
1 ,
< E(Tn/\/Z))\(x cx E;LI’\(en))

<)

where g; € L(d)\). Markov’s inequality implies therefore that

Each of the sets E%%*(e,) is of the form

=3 gio@k@) — gl

keVy

E:f)‘(en) = {x :

p

% S g0 @k(x) — (A gi)| A(da).

kEVn

Az |mi(2)] > ) < %(Tn/eﬁ\/Z)/

< const(n/efnP’?), p>2,

by Lemma 12. If we now choose the sequence e = n~7, where 0 < v < p/2 — 1,
then we shall have that 72 — 0 in A measure, and hence that 7% = 0, A-almost
everywhere. Because ¢ is a mixture of ergodic measures A, the same holds £-almost
everywhere. Finally note that, except on a ¢-null set, we have z € E3*¢(1) for all

sufficiently large n, by the Ergodic Theorem (n depends on z). We conclude that

fi B (X0 £ 5, ) =0, 2 lac. gl
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and this establishes (35) as required. O

We end with a remark on the strong mixing condition (H6). As the proof of the

previous theorem makes clear, Hypothesis (H6) was used (via Lemma 12) solely to

guarantee that the partial sums ﬁ > kev, 9i © @k converge in LP(d)) at a rate

faster than n = |V,,|, for each ergodic Gibbs distribution A. The weak convergence

conclusion of Theorem 13 therefore holds whenever such a claim can be made,

irrespective of the presence or absence of phase transitions.
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