
WEB GRAPH COMPRESSION IN MARKOVPR 1.1

L.A. BREYER

Abstract. These notes describe the results of some investigations into re-

ducing the memory requirements of the MarkovPR 1.0 software for storing,

and simulating from, web graphs. The statistics are based upon the Google

Programming Contest dataset. Many of the techniques described here have

been implemented in the newer version, MarkovPR 1.1.

1. Introduction

These notes represent the results of various investigations into reducing the mem-

ory requirements of the MarkovPR 1.0 web graph construction software. The first

version of this software, which is described in more detail in (Breyer, 2002), does

not fill memory optimally.

With the Google dataset, which consists of 916, 428 web documents, MarkovPR’s

1.0 ripper program requires approximately 200 Mb to represent the web graph,

and allow page ranking simulations. This includes space to store bidirectional

links and some other information associated with each node or web document.

We shall refer to these requirements as the baseline. In this note we explain how

the baseline requirements can be reduced to about 85 Mb on the same dataset.

Table 1 summarizes the improved storage requirements, as already implemented in

MarkovPR 1.1.

The topic of web graph compression and layout witin RAM has previously been

considered in Adler and Mitzenmacher (2001), Broder et al. (2000), Suel and Yuan

(2001). There are two statistics of main interest for web graph storage: the number

of bytes needed for each stored URL, and the number of bytes needed for each

outlink. Suel and Yuan report 6.5 bytes per URL, and 1.7 bytes per link. Bharat

Date: August, 2002.

1991 Mathematics Subject Classification. Primary 60J, Secondary 60F.

Key words and phrases. Search engines, web graph compression, information retrieval, PageR-

ank, Markov chains.

1

2 L.A. BREYER

Average number of bytes per URL (incl. trie overhead) 11.0/10.3†

Average number of bytes per URL (excl. trie overhead) 7.0

Average number of bytes per link (only outlinks counted) 1.7

Number of documents processed 916, 428

Total number of unique URL strings inserted 4, 072, 887

Compressed URL string space used (bytes) 28, 529, 733

SmallStringTrie bigstring branch overhead (bytes) 10, 608, 633

SmallStringTrie jumptable branch overhead (bytes) 5, 996, 360

Heap needed for bigstring attachment overhead (bytes) 1, 790, 230

Heap needed for a table attachment overhead (bytes) 3, 959, 608

WebNode storage (bytes) 30, 333, 654

Heap needed for outlinks (incl. outlink count for each node) 21, 093, 064
Table 1. Summary of MarkovPR 1.1 memory requirements on

Google dataset. Strings were compressed with a statistical arith-

metic coder prior to insertion, otherwise no preprocessing was per-

formed. † value expected once jumptable is optimized.

et al. report 10 bytes per URL and 3.4 bytes for each (bidirectional) link. Adler

and Mitzenmacher concentrate exclusively on efficiently storing links, and report

approximately 1.1 bytes per outlink in the best of cases, on the TREC WT2g

dataset.

An important design decision in MarkovPR 1.0 was to be able to read and process

an unordered datastream of web documents in a single pass. By contrast, Suel

and Yuan mention a long pruning and preprocessing stage of several hours, which

includes completely sorting the input documents, and Adler and Mitzenmacher’s

results perform compression only on an already fully constructed web graph.

It is also important to realize thet the shape of the dataset has a great effect

upon the storage requirements of the full graph. For example, Suel and Yuan report

their results for a graph containing 11 million nodes and URLs, and 15 million links.

By contrast, the Google dataset has 916, 000 nodes, 4 million URLs and 12 million

outlinks, and is not preprocessed in any significant way.

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 3

2. Baseline memory requirements

The initial implementation of MarkovPR 1.0 is described in (Breyer, 2002). Here

we summarize the memory requirements as inferred from a collection of nearly 1

million documents made available by Google, Inc.

Recall that an important design decision of the software consisted in reading

unprocessed data repositories in a single pass to build the web graph. The two

main reasons for this are that

• Meaningful preprocessing of the repositories, such as reordering the docu-

ments, is itself challenging for large datasets resulting from a web crawl.

The results of the preprocessing must likely be stored separately and kept

up to date with the actual data repositories.

• Speed of processing is an issue, since reading a large data repository is

very slow and can be expected to occupy workstations a long time. Dou-

bling or tripling this time due to preprocessing may be unacceptable for

experimental purposes.

In its baseline implementation, MarkovPR 1.0 consumes memory in two ways:

one is the storage and query capability of document and link urls (this is approxi-

mately 80 Mb for Google’s dataset, consisting of 4 million individual url strings), the

other is the actual storage of the web graph (approximately 95 Mb, which includes

1 million nodes storing ID, date, occupation counts, scratch area, and pointers

comprising all inlinks and outlinks, called tolinks and fromlinks respectively). Both

these components should be optimizable, and here we shall do precisely this.

3. Optimizing url storage

In the baseline implementation, the document urls are kept in a linearized trie

(Knuth, 1997). There are three basic data structures: a large string (bigstring)

which contains the actual trie contents (overlapping, standardized url strings); a

hashtable (jumptable) containing branching information needed for trie navigation;

a hashtable (nodetable) containing pointers relating the inserted url to the corre-

sponding webnode.

By splitting the trie into bigstring and jumptable, we obviate the need to reserve

space for a branch destination pointer after each character of bigstring; instead we

4 L.A. BREYER

need 8 bytes for each branch, consisting of a source pointer (the hash key) and

a destination pointer (the hash value). Note that 4 byte pointers are suitable for

addressing up to 4 Gb of data. The jumptable has approximately 4 million entries

(one branch per unique inserted url string), while the nodetable only has slightly

less than 1 million (one per document in the dataset).

3.1. Optimizing the hashtables. This is relatively easy, as follows: Since each

entry in jumptable consists of two integer values, we should only store the actual

number of bits needed to represent the values. Of course, this means we must also

store the number nb of bits needed for one of the values at least.

Since the pointers range over the whole bigstring, in some cases 4 bytes (32 bits)

will be needed (eg if bigstring’s size is on the order of a Gigabyte), and we therefore

will need 5 bits for nb. Alternatively, a simpler system is to use the 8-th bit in each

byte as a separation symbol between the two integers. The difference between these

schemes is likely a few bits, but since we store each hashtable entry in an integral

number of bytes anyway, it should not matter greatly.

An experiment with the first scheme on the dataset shows that approximately

1/3 of the space needed for jumptable can be gained, i.e. from 32 Mb to 22 Mb.

However, we shall see in the next section a better approach.

3.2. Optimizing the trie itself. There are two things we can do to improve the

memory requirements for the trie. One is to insert smaller strings, the other is to

change the implementation of the trie. In the baseline implementation, the urls

are standardized and uncompressed. By passing them through a compression filter

which preserves the prefix structure of the strings, we can save some space for the

trailing parts of the inserted strings, which otherwise only take up space.

3.2.1. Inserting smaller strings. Both arithmetic coding and LZW coding preserve

in some sense the string prefixes, hence do not alter the final shape of the trie. By

this we mean that if the strings s and s′ share a nontrivial common prefix, then

their compressed images c(s) and c(s′) also share a nontrivial common prefix. We

use arithmetic coding, and note that LZW is patent encumbered. After a few false

starts, Mark Nelson’s implementation (Nelson, 1991) was used for the compression.

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 5

One nonintuitive aspect is that we cannot use high performance adaptive dictio-

naries, since the coding of a given string would change during the lifetime of the

graph construction. This poses a problem when searching for a given compressed

url within the trie, as it may no longer be recognized.

Since arithmetic coding needs symbol statistics, these need to be gathered in

a previous pass through the dataset. While this breaks the philosophy against

multiple passes, it is relatively cheap (no significant disk space requirements) and

could conceivably be done by the web crawler directly. For example an order-1

Markov model with 2-byte frequencies, consumes 2 · 2562 bytes. The main problem

is that without adaptability, the compression performance is unimpressive. Using

the order-1 model on the Google dataset reduced the bigstring size from 42 Mb

to 32 Mb. However, more sophisticated compression techniques will likely improve

matters.

One simple possibility is to construct several order-1 models from different sec-

tions of the dataset, and for each url, try compressing with each model, keeping

the best result as the one to be inserted in the trie. We also implemented a partial

order-2 model which reduced the string size to approximately 28 Mb, at a dictionary

cost of 4 Mb. Clearly this cost can be amortized over a larger dataset.

Incidentally, standard trie asymptotics (Knuth, 1997) apply here. For example,

since the size of bigstring is simply the total number of internal nodes of the trie,

we expect asymptotically E |bigstring| ≈ n/H, where n is the number of inserted

strings and H is the entropy of the strings, assuming they have the Markov property.

Better compression gives higher entropy, hence lower space requirements.

3.2.2. A more efficient trie representation. Besides inserting smaller strings, it is

also possible to improve the representation of the branches. In the baseline im-

plementation, each branch consumes 8 bytes, for a total of 32 Mb with 4 million

distinct urls. Half of this consists in storing the branch starting point, which is

conceptually redundant, since when we reach a branch, we only need to know the

destination.

We can actually store the branch destinations directly mixed in with the bigstring

data, if we are prepared to overwrite some of the data already stored there. We

keep a copy of the overwritten data between the trie branches in bigstring, which

6 L.A. BREYER

are normally simply appended in order of occurrence during construction. During

trie traversal, we swap the data back in as needed. See the Appendix for details.

The gains achievable with this technique are quite impressive. First, we no

longer store origin pointers (4 bytes), and second, destination pointers are naturally

encoded in a variable number of bytes. A further optimization consists in storing

the destination not as an address (i.e. character pointer), but as an offset from the

branch origin, which is a much smaller number quite frequently.

There are two caveats: It isn’t always possible to overwrite bigstring data reliably,

so in some cases we store information externally, using the original jumptable. With

our dataset, there are approximately 680, 000 entries in the jumptable, unlike the

original 4 million.

Moreover, the new trie implementation only allows inserted strings to have a

maximum length of 127.

The length constraint is not as problematic as it seems, since most inserted

strings are only around half this size. For those strings exceeding 127 characters,

we replace the end with a five character MD5 hash (see the discussion of hashing

below). Table 1 summarizes the optimization gains due to some the above tech-

niques (jumptable optimization is not implemented yet, but calculations show that

the memory needed could be halved, resulting in an improved storage cost of 10.3

bytes per URL).

3.3. Comparison with MD5 hashing. It is interesting to discuss how our trie

optimizations compare with a completely different scheme, namely that of storing

the url strings in hashed form. The MD5 hash is an example of a readily available

means of converting an arbitrarily long string s into a fixed size integer, h(s). In

the case of MD5, h(s) is 16 bytes long.

First we note that any similarity between two strings s and s′ is lost when

hashing, so the resultant b-byte integers h(s) and h(s′) cannot be stored more

efficiently than side by side (as opposed to overlapping them, Example 1. in

a trie). Theoretically, a good hash function will distribute the strings uniformly

within the allowable range 0, . . . , 2b, spreading two similar strings far apart. We

can model this by assuming that h(s) and h(s′) are independent whenever s 6= s′.

The following lemma is proved in ???

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 7

Lemma 1 (Birthday Lemma). Let {h(s) : s = 1, . . . , q} be a sequence of inde-

pendent random variables, uniformly distributed over the range 0, . . . , N . Then for

1 ≤ q ≤
√

2N ,

0.3 · q(q − 1)
N

≤ P
(
h(s) are not all distinct

)
≤ q(q − 1)

2N
.

Suppose we replace the trie with an array of hashed q = 28k strings. Each

string will occupy b bytes. By choosing b sufficiently large, we can guarantee a

small enough probability of collision (when two distinct url strings hash to the

same value). From Lemma 1, the probability of a collision will be less than q(q −

1)/28b+1 ≈ 216k−8b−1, but more than 0.3 ·216k−8b. The largest web graphs collected

so far consist of approximately 2 billion urls, so if we take k = 4, we see that b = 8

gives a probability of collision of at least 0.3, while if b = 9, the collision probability

is at most 0.002.

It follows that the best hash functions cannot beat 9 bytes per url (assuming a

total collection of 2 billion urls, which is not unreasonable in a distributed setting).

If we assume the hash function is not optimal, this estimate should be revised

upwards.

More generally, recall that in a distributed setting, we want to mark on each

machine those locally stored urls which correspond to a node handled by another

machine. This means that we cannot allow collisions between any two url strings

within the whole distributed dataset. The size of the hash code is therefore deter-

mined by the size of the full dataset.

By contrast, a system using statistically based lossless compression of the urls

requires an amount of memory per machine which depends only on the total number

of urls stored locally on that machine. Hence increasing the number of machines or

the size of the dataset does not affect compression performance on each individual

machine. This difference in scaling behaviour becomes important for very large

datasets.

In MarkovPR 1.1, we use hashing to truncate strings to a maximum length of

127 characters. Here we simply want to discuss the number of bytes required to

prevent collisions. This problem is not directly covered by the previous discussion,

as we need only prevent collisions between urls pertaining to a single subdirectory

on a single web server. Again, we shall assume 2 billion url strings. Suppose the

8 L.A. BREYER

string s has length greater than M , where M = 127. We want to hash the end of

the string starting with character M − r, where r = 28b. By the above discussion,

we can assume r ≤ 9 already. Now it is clear that the unhashed portion of s is more

than enough to contain the host server name and a large portion of the directory

structure, so that collisions between hashed strings can only occur between urls on

the same host in essentially the same directory. Let nf be (an upper bound for)

the number of HTML files collected from a single host, and nh be (an upper bound

for) the number of distinct host URLs stored on a single machine in the distributed

cluster. Then from Lemma 1,

P
(
corrupted trie

)
≤ nh · P(hash collision on same host)

≤ 2log2(nh)+2 log2(nf)−8b−1

Note that this bound is essentially linear in nh. Assuming for example log2(nh) ≤ 20

and log2(nf) ≤ 14, it follows that that b = 7 will put the collision probability at

less than 0.002. In MarkovPR 1.1, optimism compels us to use b = 5.

4. Optimizing the web graph

The baseline representation of the web graph requires nearly 100 Mb, which

includes space for nodes containing a fixed size component (32 bytes) and two

variable sized components (tolinks and fromlinks arrays). Each entry in the variable

sized arrays is 4 bytes, and represents either a pointer to another node, or a dangling

pointer (unresolved url).

4.1. Optimizing the representation. In the baseline implementation, several

variables are packed together into each WebNode, as well as a list of tolinks and

fromlinks. This is not very flexible in that it doesn’t permit a unified approach

towards associating various calculated properties to each WebNode. Future im-

plementations of MarkovPR will be better served by implementing a properties

manager for WebNodes. As a first step towards this more efficient system, we now

store only an identifying ID and the outward pointing tolinks directly within the

WebNode. The dual set of fromlinks, and other variables too, can be constructed

on demand if required, and indexed by the WebNode’s ID.

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 9

More generally, it makes sense to store the tolinks at the WebNode since they

represent essentially static information: As discussed in (Breyer, 2002), if the goal

is to save physical memory, it makes no sense to prune or otherwise process the

tolinks after the web graph has been fully constructed, and during construction this

is impossible.

We aim therefore to compress as much as possible the tolinks during construc-

tion. This generally requires a tradeoff between memory size and access speed

later during computations. Specifically, for each WebNode, we first sort the set of

tolinks pointers, and compute the pointer differences, which we then store consecu-

tively with a variable length encoding. The nth tolink can be retrieved by stepping

through the first n differences and adding them.

This type of compression is quite natural given the growth pattern of the lin-

earized trie. In particular, since all relevant tolink urls must be inserted (or found to

be existing) during the construction of the WebNode, the pointer differences tend to

be very small, which benefits compression. On the Google dataset, approximately

half the total number of pointer differences can be represented in a single byte.

An interesting property of this tolinks representation, which may prove important

in future investigations, is that these pointer differences are (partially) repeated

every time two WebNodes share (partially) the same tolinks. This suggests that we

can further compress the tolinks in case many web documents contain copied links.

Various models for web graphs depend upon such copying properties, and in fact

the graph compression results in (Adler and Mitzenmacher, 2001) depend on these.

One last aspect we want to mention here about the tolinks compression proposed

above, which is implemented in MarkovPR 1.1, is that reconstructing the link

pointers each time they are needed introduces a performance penalty, informally

estimated to be a factor of 5. A simple caching scheme was introduced, which needs

to be taken into account when constructing new page ranking samplers, but the

benefits a very small, due mainly to the fact that the PageRank-type samplers do

not generally visit the exact same WebNode often enough.

4.2. Optimizing the dangling pointers. The main difficulty with the dataset is

the number of dangling pointers. Each such pointer arises as part of one or several

nodes, but also as an entry in the trie. With the Google dataset, 3/4 of the urls

10 L.A. BREYER

are not directly associated with a node, and on average half the outgoing links of

each node are dangling.

Dangling pointers may or may not be resolved into leafnodes in the distributed

setting, hence it is a bad idea to prune them early. Pruning these pointers after

the web graph is fully constructed and connected to the other machines in the

distributed case is somewhat pointless, since the reclaimed memory can’t be used to

create a bigger web graph (this would require multiple passes through the dataset).

It is impractical to keep a detailed external list of censored urls for the purpose of

preventing their addition in the web graph construction stage, but a flexible set of

rules may allow heavy pruning. For example, we might decide to build only the

*.edu part of the web graph, which allows us to prune all links which leave that

domain. This is a complicated subject which will need some research.

5. Appendix

The SmallStringTrie is a linearlized implementation of the classical trie data

structure (Knuth, 1997, Section 6.3), in which the cost of keeping pointers to sub-

trees is reduced. We shall describe the structure informally on a simple example.

Consider the following set of strings:

(1) http://www.bu.edu/

(2) http://www.bu.edu/iscip/

(3) http://www.bu.edu/iscip/news.html

(4) http://www.bu.edu/iscip/perspective.html

(5) http://www.bu.edu/com/html/events.html

(6) http://www.bu.edu/com/html/faculty1.html

In Figure 1, we represent the trie corresponding to these strings. Figure 2 shows a

linearized version of Figure 1. The characters are stored consecutively in a character

array called bigstring. Each arrow will be called a branch.

Navigation within the linearized trie is by means of two character pointers, p and

s. The first always points into the trie, while the latter points to the string being

inserted or searched. The pseudo-code to insert a new (null terminated) string s is

shown in Listing 1 (searching for an existing string is similar).

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 11

http://www.bu.edu/

iscip/

news.html

perspective.html

com/html/ events.html

faculty1.html

Figure 1. Trie structure prevents duplication of common url prefixes.

http://www.bu.edu/ iscip/ news.html perspective.html com/html/ events.html faculty1.html

Figure 2. Linearised trie. Each arrow is a branch link, with origin

k and destination v.

To store the branches outside the trie, we could keep pairs of origin and destina-

tion pointers. Alternatively, we must reserve space for a potential branch destina-

tion after each trie character. Both these methods are space consuming (especially

the latter). Instead, the SmallStringTrie overwrites the trie data with a branch

destination pointer at the location it is needed, placing a copy of the overwritten

data at the branch destination. This technique will be called a swap.

events.html e13faculty1.html

head

copy

branch

replace with character 11

Figure 3. A swap operation creates a new branch (diagram omits heads).

12 L.A. BREYER

Listing 1

// p points to beginning of trie ,

// s points to beginning of inserted string

quit = false;

found = false;

while not quit {

compare first character at p and s;

if equal {

p++; s++;

if s is null {

found = true;

quit = true;

}

} else if p is a branch origin {

p = branch destination;

} else {

found = false;

quit = true;

}

}

if not found {

create another branch with origin p and

destination the end of the trie ;

append s at the branch destination;

}

Figure 3 illustrates the swap during insertion of the last string, http://www.bu.-

edu/com/html/faculty1.html. After the pointer p reaches the character e, there

are no more branches, but s still points to the suffix faculty1.html, which must be

appended. The length of the jump is known (11 characters, including the trailing

null character), so the character e is copied at the end of the trie, and overwritten

with a single byte integer whose value is 11, the length of the jump. After the

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 13

copied value of e comes the string pointed to by s. Clearly, the swap operation is

reversible, i.e. the state of the trie before the swap is recoverable by overwriting

with the copied data and fixing the head (defined below).

Since we no longer store the branch origin separately, we need a way to com-

pute, for a given pointer p, if a branch originates from p (refer to Listing 1). The

mechanism for this is as follows: At the head of the string, s, which we place after

a branch destination, we insert a single character, called the head, which contains

either the number of characters until the end of the appended string s (at first), or

the number of characters until the next branch origin created within the appended

string s (subsequently). The head can only contain a small number, which is why

the SmallStringTrie is limited to strings of size 127, for we use one bit to mark

whether the character count is to the end of s, or to the nearest branch origin.

The trie insertion and search pseudo-code in Listing 2 is substantially identical

to Listing 1, except that, before the comparison between p and s, we check that

there isn’t a branch origin starting at p (by checking the distance from the nearest

head). If there is, we read the branch destination and overwrite it with the saved

data, which can be found at the branch destination. We then compare p with s to

see if we take the new branch (whose destination is now known) or not.

To illustrate these ideas, we shall trace the state of the SmallTringTrie’s bigstring

during the successive insertions of the example urls (except for the first two, which

we omit for readability. We begin with an empty bigstring. After inserting the url

(3), we obtain

33 http://www.bu.edu/iscip/news.html

The number in the box represents the head of the branch, and would be inserted

as ASCII character 33. Next, we insert url (4), obtaining

24 http://www.bu.edu/iscip/ 9 ews.htmln 33 16 perspective.html

Here, a new branch was created 24 characters after the start of the string

http://ww. . . , whose destination is 9 characters after its origin. The character

n of the substring news.html is copied at the branch destination, and overwritten.

The original head, which contained 33, is also copied and overwritten. Finally, the

suffix perspective.html is written, together with an associated head containing its

length, 16. We now insert the url (5), obtaining

14 L.A. BREYER

Listing 2

// h points to first head

// p = h + 1

// s points to beginning of inserted string

quit = false;

found = false;

while not quit {

if p − h >= contents of h {

j = integer encoded at p;

overwrite integer at p with data at p + j;

overwrite contents at h with head copy at p + j (after data);

}

// now p has data and h is updated

compare first character of p and s;

if equal {

p++; s++;

if s has zero length {

found = true;

quit = true;

}

} else if p is a branch origin {

h = branch destination (after swap data);

p = h + 1;

} else {

found = false;

quit = true;

}

}

undo all swaps in reverse order;

if not found {

create another branch with origin p

and destination the end of the trie ;

append another head containing size of s ;

append s;

}

WEB GRAPH COMPRESSION IN MARKOVPR 1.1 15

18 http://www.bu.edu/ 34 scip/ 9 ews.htmln 33 · · ·

· · · 16 perspective.htmli 24 19 com/html/events.html

Similarly, insertion of url (6) gives

18 http://www.bu.edu/ 34 scip/ 9 ews.htmln 33 · · ·

· · · 16 perspective.htmli 24 · · ·

· · · 9 com/html/ 11 vents.htmle 19 13 faculty1.html

For more specific implementation details, including the boundary case when

there is no room to overwrite existing data at a new branch origin, we refer the

reader to the MarkovPR 1.1 source code.

The memory cost of the SmallStringTrie implementation is as follows: Each

inserted string contributes a single branch, hence an overhead of the space needed

to store a branch destination only, as a distance from the branch origin. Moreover,

each branch requires a copy of the head. Otherwise, the memory requirements are

exactly the same as in the trie, since each string’s trailing null is no longer needed,

being replaced by the nearest head value.

References

[1] Adler, M. and Mitzenmacher, M. (2001) Towards compressing web graphs. In Proceedings

of the IEEE data compression conference (DCC) March 2001.

[2] Breyer, L.A. (2002) Markovian Page Ranking Distributions: Some Theory And Simula-

tions.

[3] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,

A. and Wiener, J. (2000) Graph structure in the web: experiments and models. In 9th Int.

World Wide Web Conference, 2000.

[4] Knuth, D. (1997) The Art Of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley.

[5] Nelson, M. (1991) Arithmetic Coding + Statistical Modeling = Data Compression Dr.

Dobb’s Journal, Feb. 1991.

[6] Suel, T. and Yuan, J. (2001) Compressing the Graph Structure of the Web. In Proceedings

of the IEEE data compression conference (DCC) March 2001..

E-mail address: laird@lbreyer.com

