
YAGLOM LIMITS VIA COMPACTIFICATIONS

L.A. BREYER

Abstract. Consider a Markov process X with finite lifetime. In this paper,

we derive sufficient conditions for the existence of a Yaglom limit, or limiting

conditional distribution for X.

1. Introduction

The problem of Yaglom limits for Markov processes can be described as follows.

Let X be a Markov process with locally compact metric state space E, X0 ∼ ν,

and suppose that the lifetime ζ = inf{s > 0 : Xs /∈ E} is a.s. finite. We assume

that Xs+t /∈ E, t ≥ 0, which is a minimality requirement on X. Does there exist

a probability measure κ on E such that

lim
t→∞

Eν(f(Xt) | ζ > t) =
∫
fdκ, f bounded.(1)

Such a measure, if it exists, is variously known as a quasistationary distribution or

limiting conditional distribution. In this paper, we use the same terminology as in

(Kesten, 1995), and refer to κ as a Yaglom limit, in honour of A.M. Yaglom, who

first showed the existence of such measures for branching processes (Yaglom, 1947).

A first generalization of his results was achieved by Seneta and Vere-Jones (1966),

who showed that (1) holds as soon as X is an irreducible Markov chain with finite

state space. Note that we can think of (1) as a generalization of the ergodic theory

of Markov chains, which corresponds to the “limiting” case when ζ =∞.

These results were later refined into the theory of λ-recurrence (see Ander-

son, 1991, for a complete account), where λ ≥ 0 is a real number such that

Eκ[f(Xt)] = e−λt〈κ, f〉,
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where 〈κ, f〉 denotes the integral of f with respect to κ. Incidentally, this may be

stated without reference to λ as

Eκ[f(Xt) | ζ > t] = 〈κ, f〉,

which is a common definition of a quasistationary distribution κ (see Nair and

Pollett, 1993, for the connection). Yaglom limits (1) are always quasistationary

distributions in this sense, and conversely (by choosing ν = κ). However, the

interesting problem is to determine whether (1) holds when ν is a point mass in E.

As mentioned above, this problem has been solved whenX is positive λ-recurrent.

However, in most applications where quasistationarity plays a role, the relevant pro-

cess is not λ-recurrent, and the existence question is open. Various special cases

have been solved, notably by van Doorn (1991), Kijima (1993), Collet et al. (1995)

and Bean et al. (1997). Considerable progress on the general problem was made

recently by Kesten (1995). He showed that in discrete time, with E = N, a bounded

jump condition implies the validity of (1) independently of the λ-classification.

In this paper, we shall also consider Yaglom limits without λ-recurrence as-

sumptions, but for Markov processes on arbitrary state spaces. We shall see that

Kesten’s bounded jump type of assumption again enters the picture, but this time

by entirely different methods. Moreover, our approach unifies the theory of Yaglom

limits for both common diffusions and Markov chains. The methodology of this

paper is related to that of Breyer (1998b), to which we sometimes refer. See also

Breyer (1997).

We now list three assumptions which we shall make on the Markov process X.

The reader will note that all these are satisfied by a wide range of processes often

encountered, including diffusions on Rd and many Markov chains.

Assumption (A1): There exists a Radon measure m on E (finite on compacts)

such that

Ex[f(Xt), ζ > t] =
∫
pt(x, y)f(y)m(dy), f ≥ 0,(2)

and (t, x, y) 7→ pt(x, y) > 0 is jointly continuous. Moreover, we assume that

m is excessive.

Note that we implicitly asume some sort of irreducibility of the state space.

Recall that an excessive measure m must satisfy Em[f(Xt), ζ > t] ≤ 〈m, f〉 for all
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f ≥ 0, t ≥ 0. It is well known that, as soon as (2) holds for some Radon measure

m, it also holds for some other, excessive measure m′. Thus the last sentence in

Assumption (A1) is only there for convenience.

Secondly, we shall require a parabolic Harnack inequality. The validity of (A2)

below is well known for common diffusions (Friedman, 1964). When X is a Markov

chain, (A2) is also satisfied (Breyer, 1998a). We remind the reader that a function

u : (0,∞)× E → [0,+∞] is called parabolic if is satisfies

∂

∂t
u(t, x) = Au(t, x) in (0,∞)× E,

where A is the local martingale generator of X (see Breyer, 1998a).

Assumption (A2): The process X satisfies a parabolic Harnack inequality: For

any compact sets K ⊆ E, K ⊂ (0,∞)× E, let s > sup{t : (t, x) ∈ K}. Then

there exists a constant C = C(K,K) such that every function u that is

parabolic in (0,∞) satisfies

sup
(t,x)∈K

u(t, x) ≤ C · inf
y∈K

u(s, y).

Assumption (A3): For each compact set K ⊂ E, there exists another compact

set K ′ ⊂ E such that

Px(XTKc ∈ K
′, ζ > TKc) = 1, x ∈ K,

where TKc = inf{t > 0 : Xt /∈ K} is the first exit time from K.

Assumption (A3) requires the jumps of X to be bounded (but not uniformly).

Armed with (A1)-(A3), we shall derive our results.

2. Entrance laws

Let X be a Markov process on a separable metric space E, with finite lifetime

and satisfying Assumption (A1).

For a given probability measure ν such that X0 ∼ ν, we denote by (νt : t > 0)

the family of probability measures on E given by

〈νt, f〉 = Eν(f(Xt) | ζ > t), t > 0, f ≥ 0.(3)

We shall be mainly interested in the family of entrance laws (ηs : s > 0) defined as

ηst (dy) =
∫
νs(dx)pt(x, y)m(dy), t > 0.(4)
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These entrance laws are said to converge if, for each t > 0, the probability measures

ηst converge weakly, as s→∞.

Proposition 1. The Yaglom limit κ exists if and only if the entrance laws ηs

converge, as s→∞, to the entrance law defined by

κt(dy) = e−Λtκ(dy), t > 0.

Proof. If the Yaglom limit νt ⇒ κ exists, then taking g bounded continuous on E

we have

〈ηst , g〉 = Eν(g(Xt+s), ζ > t+ s)/Pν(ζ > s)

= 〈νt+s, g〉Pν(ζ > t+ s)/Pν(ζ > s).

Putting first g = 1, we find that

L(t) = lim
s→∞

Pν(ζ > t+ s)/Pν(ζ > s)

exists, and then L(t) = e−Λt for some Λ ≥ 0 by a standard argument. Now letting

g range over the bounded continuous functions on E, we get ηst ⇒ κt for each t > 0,

as s→∞. Conversely, suppose that the latter holds for each t > 0; choosing t0 > 0

and g bounded and continuous, we find

lim
s→∞
〈νs, g〉 = lim

s→∞
〈ηs−tt , g〉/〈ηs−tt , 1〉

= 〈κt, g〉/〈κt, 1〉

= 〈κ, g〉,

and this establishes the existence of the Yaglom limit.

Due to the above result, we can (and will) study the convergence of the entrance

laws (ηs) rather than that of the probability measures (νt) directly. Since these

entrance laws are best studied by reversing the direction of time, we recall now

some facts and notation we shall need.

Since by (A1), the measure m is excessive, we define a dual transition function

P̂t(x, dy) = p̂t(x, y)m(dy) by setting

p̂t(x, y) = pt(y, x), x, y ∈ E, t > 0.(5)

Associated with (P̂t) is a Markov process, to be denoted X̂.
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Note that Assumptions (A2) and (A3) will often hold for X̂ when they hold for

X.

Indeed, consider first (A2). If X is a diffusion with generator L, then X̂ is

typically a diffusion with generator L̂ satisfying
∫
L̂f · gdm =

∫
f · Lgdm for all

suitable test functions f , g. Conditions which ensure (A2) for L̂ are given in

(Friedman, 1964). Supposing instead that X is a minimal Markov chain on a

countable state space, it is clear that X̂ is one, too. Thus (A2) holds by (Breyer,

1998a).

Now consider (A3). The process X̂ can be realized as a version of X−t, when

X0 ∼ m and X̂0 ∼ m. We can therefore relate the size of jumps of X̂ to the size of

the jumps of X. For example, if the jump sizes of X are uniformly bounded, then

so are those of X̂. A standard argument can then be used to get (A2) for (P̂t), at

least for m-almost all x ∈ E.

Let E = (−∞, 0]× E. We shall be interested in the family (ks) of functions on

E given by

ks(t, y) =


∫
p̂s+t(y, a)ν(da)/Pν(ζ > s) t ≥ −s, y ∈ E

0 t < −s, y ∈ E.
(6)

Note that it is obvious from (5) and (4) that ks(t, ·) = dηst /dm for t ≥ −s.

Given (T0, X̂0) ∈ E, the (backward) spacetime process associated with X̂ is the

process X̃t = (T0− t, X̂t). A function u : E → [0,∞] is called parabolic for X̂ if the

process u(X̃t) is a local martingale. We can now state

Lemma 2. For any s > 0, the function ks is parabolic for X̂ on (−s, 0]× E, and

satisfies

∫
ks(0, y)m(dy) = 1.(7)
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Proof. We prove the stronger statement that ks is spacetime invariant on (−s, 0]×E:

take (t, x) in this set, and choose u < t+ s;

Ẽ(t,x)[ks(X̃u), ζ̃ > u] =
∫
p̂u(x, y)ks(t− u, y)m(dy)

=
∫
m(dy)p̂u(x, y)

∫
p̂t+s−u(y, a)ν(da)/Pν(ζ > s)

=
∫
p̂t+s(x, a)ν(da)/Pν(ζ > s)

= ks(t, x).

It follows that ks is invariant for X̃ on (−s, 0]× E, and hence that

∂

∂t
ks = Âks on (−s, 0]× E,

where Â is the local martingale generator of X̂. Thus ks is parabolic (Breyer, 1998a).

Finally, ∫
ks(0, y)m(dy) =

∫
m(dy)

∫
p̂s(y, a)ν(da)/Pν(ζ > s)

=
∫
ν(da)

∫
ps(a, y)m(dy)/Pν(ζ > s)

= 1,

and this is the required normalization.

More generally, it is easy to check that ks is excessive for X̃ on all of E =

(−∞, 0] × E. There thus exists an integral representation of ks on the Martin

compactification F̃ of X̃. This is computed as follows.

Define the Martin kernel of X̃ with normalization m by

K̃(t, x; s, y) =
1(−∞,t](s)pt−s(y, x)

Py(ζ > −s)
, s, t ≤ 0;x, y ∈ E(8) (

=
1(−∞,t](s)p̂t−s(x, y)∫

m(dz)p̂−s(z, y)

)

The space F̃ is the completion of E with respect to the metric

d(y, z) =
∫

1 ∧
∣∣∣K̃(t, x; y)− K̃(t, x; z)

∣∣∣ γ(t, x)dt⊗m(dx), y, z ∈ E,

where γ is any strictly positive dt⊗ dm integrable function. The function K̃(t, x; ·)

has, for each (t, x) ∈ E, a continuous extension to F̃ , and F̃ is compact (Doob, 1984;

Bass, 1995).
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Proposition 3. For each s > 0, there exists a probability ξs on F̃ such that

ks(t, x) =
∫
K̃(t, x; y)ξs(dy).(9)

This measure is concentrated on {−s}× supp(ν) ⊂ E and has the explicit represen-

tation

ξs(dt, dy) = ε−s(dr)Py(ζ > −s)ν(dy)/Pν(ζ > −s),(10)

where ε−s is the point mass at {−s}.

Proof. Since ks is excessive for X̃ with normalization (7), the standard integral

representation on the Martin compactification applies (Meyer, 1968), and this is

(9). To get (10), we note that by (6) and (8),∫
K̃(t, x; r, y)ξs(dr, dy) =

∫
E

1(−∞,t](r)pt−r(x, y)
Py(ζ > −r)

Py(ζ > −s)ν(dy)
Pnu(ζ > −s)

ε−s(dr)

= 1(−∞,t](−s) ·
∫
pt+s(x, y)ν(dy)/Pν(ζ > s)

= ks(t, x).

The properties of the functions (ks) developed above bear a striking resemblance

to those of the functions (hs) studied in (Breyer, 1998b). A similar approach as in

that paper can therefore be expected to lead us to our goal. In particular, we can

immediately state the following result:

Lemma 4. Suppose that X̂ satisfies Assumptions (A1)-(A3), then for every set

{sn} ⊂ (0,∞) with no accumulation point, there exists a subsequence {sn(j)} and

a (possibly zero) function k, the latter parabolic in E, such that

lim
k→∞

ksn(j)(t, x) = k(t, x), (t, x) ∈ E.

Proof. Since F is compact, the measures ξsn are tight, and there exists ξ such that

ξsn(j) ⇒ ξ. By weak convergence, we then have

k(t, x) :=
∫
K̃(t, x; y)ξ(dy)

= lim
j→∞

∫
K̃(t, x; y)ξsn(j)(dy)

= lim
j→∞

ksn(j)(t, x),
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for the function y 7→ K̃(t, x; y) is continuous on the closure of (−∞,−t)× E. The

parabolicity of k follows from (Breyer, 1998a, Lemma 9).

Since each function k is a prospective density for the limiting entrance law κt of

Lemma 1, we shall need conditions which guarantee that k > 0 on E.

Unlike the similar problem treated in (Breyer, 1998b, Lemma 9) for (hs), it

is not the case here that a judicious choice of the initial distribution ν together

with (A1)-(A3) suffices for k > 0. The reason for this difference is that in (Breyer,

1998b), the function hs was normalized by the measure ν. In the case of ks, we have

no control over the normalizing measure, m. Instead, we shall develop in the next

section a combined topological and probabilistic approach to the positivity of k.

The uniqueness of k, which we will also need to apply Proposition 1, is considered

in the last section.

Lemma 5. Suppose that X̂ satisfies (A1)-(A3). If the probability measures (νt)

are tight, then every limit point k of (ks) described in Lemma 4 is nonzero and

satisfies ∫
k(0, y)m(dy) = 1.(11)

Consequently, there exists a sequence {s(j)} such that

lim
s(j)→∞

Eν [f(Xs(j)) | ζ > s(j)] =
∫
f(y)k(0, y)m(dy), f ∈ L1(κ).(12)

When k is independent of the sequence {s(j)}, the Yaglom limit exists and κ(dy) =

k(0, y)m(dy).

Proof. Given ε > 0, let K ⊂ E be compact such that νt(K) ≥ 1 − ε for all t. By

(A2) and the bounded convergence theorem,∫
K

k(0, y)m(dy) = lim
j→∞

∫
K

ktj (0, y)m(dy) ≥ 1− ε.

Letting K ↑ E gives (11). Now suppose that the limit is independent of the subse-

quence {s(j)}, and let f ∈ L1(κ)+. By Fatou’s lemma, it follows that

lim
s→∞

∫
ks(0, z)f(z)m(dz) ≥

∫
f(z)κ(dz),

and by Scheffé’s Lemma, we deduce that ks(0, ·) converges to k(0, ·) in L1(dm); in

particular, this implies (12).
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3. Tightness

In this section we shall make the assumption

Assumption (TA1): There exists Λ ≥ 0 such that

lim
s→∞

Pν(ζ > t+ s | ζ > s) = e−Λt.

More generally, we could assume that the limit e−Λt in (TA1) is instead of the

form
∫
e−λtξ(dλ) for some probability measure ξ on R. The arguments in this

section then apply with trivial changes.

The validity of (TA1) was shown under suitable assumptions in (Breyer, 1998b);

see lemmas 9 and 14 of that paper, together with the examples in the last section

thereof. We summarize the results found there below.

Proposition 6. Suppose that the Markov process X satisfies (A1)-(A3) and that

the initial measure ν is compactly supported. If, as s → ∞, there exists a time

homogeneous Markov process Y such that

(Xr : r ≤ t | ζ > s)⇒ (Yr : r ≤ t),

then (TA1) holds.

It is known that the existence of the conditioned process Y does not guarantee

the Yaglom limit. We are therefore interested here in conditions which guarantee

the tightness of the set of probability measures (νt) defined by (3).

According to Prokhorov’s criterion, tightness of probability measures always

occurs when these are defined on a common compact set. Since all the probabilities

νt are defined on E, the family (νt) is tight on any compactification F of E, and the

possible limit points are consequently all probability measures on F , which may or

may not charge E. To find out where the probability mass ends up as t → ∞, we

require a compactification F with good probabilistic properties.

There will in general exist many “good” compactifications F . Our task here is

to show the existence of one such, and to list the properties which make it “good”.

In applications, any compactification with these properties may then be used.

Proposition 7. Let (A1) hold. There exists a metric compactification F ′ of E

with the following properties:
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(i) Every compactly supported function on E which was originally continuous

remains continuous on F ′;

(ii) There exists on F ′ a Strong Markov process (X ′t) extending (Xt):

if T ′E = inf{t > 0 : X ′t ∈ E} then the laws of (X ′T ′E+t : t > 0) and (Xt : t > 0)

coincide.

(iii) The lifetime ζ ′ of X ′ has a Laplace transform which is continuous in x:

x 7→
∫ ∞

0

e−ptP′x(ζ ′ > t)dt is continuous on F ′.

The items listed are standard properties of the Ray-Knight compactification

procedure, see (Rogers and Williams, 1994). This procedure is normally performed

on a process X with infinite lifetime. We outline below the simple changes required

in the present setting, where it nearly always happens that ζ <∞.

Proof. We begin by adding to E a cemetery state ∂, isolated from E, and set

Xt+ζ = ∂, t ≥ 0. Now ζ is the first hitting time of ∂, and the process has an

infinite lifetime on E ∪ {∂}. Let F be any Ray-Knight compactification (Rogers

and Williams, 1994) of E ∪ {∂}. Since ∂ was isolated from E, it remains isolated

in F . Thus F ′ = F\{∂} is again compact. By (A1), the resolvent (Vp) of X maps

the set of uniformly continuous functions (in the original topology) into itself, and

consequently part (i) follows. On F , there exists a unique Markovian resolvent (Up)

with the following properties:

(a) Upf = Vpf on E ∪ {∂}, whenever f = 0 on F\(E ∪ {∂}),

(b) Up : Cb(F )→ Cb(F ), where Cb(F ) is the set of bounded continuous functions

on F .

Associated with (Up) is a Strong Markov process (Yt) on F which extends X on

E ∪ {∂} in the manner of (ii). In particular, ∂ is an absorbing state for Y , and we

can construct X ′ by killing Y the first time it hits ∂. Clearly X ′ satisfies (i) and

(ii). Moreover, since ∂ is isolated, the function f = 1F ′ is bounded and continuous

on F . Applying (a) above gives

Vp1F ′(x) = Up1F ′(x) =
∫ ∞

0

e−ptP′x(ζ ′ > t)dt,

and this is continuous in x by (b), first on F and hence on F ′.

Armed with the process X ′, we now investigate the tightness of (νt).
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Proposition 8. Let (A1) and (TA1) hold. If µ is any weak limit point of (νt) on

F ′, then one of the following holds.

(i) Λ > 0 and

µ

(
x ∈ F ′ : P′x(0 < ζ ′ <∞) = 1

)
= 1,

(ii) Λ = 0 and

µ

(
x ∈ F ′ : P′x(ζ ′ =∞) = 1

)
= 1.

In particular, the measures (νt) are tight only if Λ > 0, because Px(ζ <∞) = 1 for

all x ∈ E.

Proof. Let νtn ⇒ µ on F ′. By Proposition 7, (ii) and (iii), we have for p > 0,∫ ∞
0

e−psP′µ(ζ ′ > s)ds =
∫
µ(dx)

∫ ∞
0

e−psP′x(ζ ′ > s)ds

= lim
n→∞

∫
νtn(dx)

∫ ∞
0

e−psP′x(ζ ′ > s)ds

= lim
n→∞

∫
νtn(dx)

∫ ∞
0

e−psPx(ζ > s)ds

= lim
n→∞

∫ ∞
0

e−psPν(ζ > s+ tn | ζ > tn)ds

=
∫ ∞

0

e−pse−Λsds,

where we have used the fact that νt is concentrated on E, and then (TA1) and

the bounded convergence theorem. Now s 7→ P
′
x(ζ ′ > s) is right continuous and

decreasing, so by the uniqueness property of Laplace transforms, we must have

P
′
µ(ζ ′ > s) = e−Λs. Now let s → 0; we see that P′µ(ζ ′ > 0) = 1, and since

P
′
x(ζ > 0) ≤ 1, it follows that µ is concentrated on those x for which P′x(ζ ′ > 0) = 1.

If we let s → ∞, there are two cases to consider. Either Λ > 0, in which case

P
′
µ(ζ ′ = ∞) = 0 by bounded convergence, and µ must be concentrated on those x

for which P′x(ζ ′ < ∞) = 1. In the other case, Λ = 0 and then P′µ(ζ ′ = ∞) = 1,

whence we get statement (ii) above.

According to the above, there can never exist a nonzero Yaglom limit in the case

Λ = 0, since any possible limit measure ξ is then concentrated on that part of the

boundary F ′\E from which X ′ takes forever to die.

It is possible to classify some of the boundary points x ∈ F ′\E as follows:
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Definition 9. Let X ′ be the process in Proposition 7.

(i) A point x is called asymptotically remote (from the cemetery state) if it forms

a trap: P′x(X ′t = x ∀t) = 1. This property is denoted (AR).

(ii) A point x is called asymptotically proximate if

P
′
x(ζ ′ = 0) = Px(X ′ hits ∂ immediately) = 1. This property is denoted (AP).

The terminology for (i) is due to Ferrari et al. (1995) and for (ii) it is due to

Pakes (1995). The Blumenthal zero one law implies that every state x ∈ F satisfies

P
′
x(ζ ′ = 0) = 0 or 1. Some of the remaining boundary points may be holding points,

where X ′ waits an exponentially distributed time before jumping. If holding points

do not exist on the boundary F ′\E, then each boundary point is either (AP), (AR),

or else the sample path of X ′ must immediately hit E a.s. (after which it stays there

until death); it is not clear how best to classify these other types of points

The value of the (AR)/(AP) classification is that it appears naturally in the

conclusions of Proposition 8. Specifically, it is worth mentioning the following

corollary:

Corollary 10. If (A1) and (TA1) hold and every boundary point in F ′\E is either

(AP) or (AR), then the measures (νt) are tight (in the original topology of E) if

and only if Λ > 0.

Example 11. Let (Xt) be a uniformly elliptic diffusion on Rd, killed upon

first exit from the unit disc E = {x : ‖x‖ < 1}. Both (A1) and (TA1) hold, the

latter being a consequence of the eigenfunction expansion of the semigroup of X.

The Euclidean boundary points of E are well known to be regular for Ec, that

is limx→∂E Px(ζ > t) = 0 for each t > 0. Let F ′ = E ∪ {+∞} be the one-point

compactification of E, and put X ′t = ∂ /∈ F ′ if X ′0 = +∞, and X ′t = Xt if X ′0 ∈ E.

The process X ′ clearly extends X, and it is easy to see that its semigroup (hence

its resolvent) maps Cb(F ′) into itself. Clearly, every boundary point is (AP) here.

By the corollary above, the (νt) are tight on E.

Example 12. Let X be one-dimensional Brownian motion, killed upon first

hitting zero. The state space is E = (0,+∞), and (TA1) holds by using the

spectral representation of the Laplacian on E (see McKean, 1956). We shall take

F ′ as the Martin boundary [0,+∞]. Here also, the semigroup of X maps Cb(F ′)
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into itself, as can be easily checked. Thus there exists a Feller-Dynkin process on

F ′ extending X. The boundary point 0 is (AP), while the boundary point +∞ is

(AR). The measures (νt) are not tight since Λ = 0.

Example 13. Let X be a birth and death chain on Z with constant birth and

death parameters, killed upon first hitting 0. The assumption (TA1) was shown in

(Jacka and Roberts, 1994). We shall take E = {1, 2, 3, . . . }. This is the analogue of

the previous example. The boundary point +∞ is still (AR), but now the boundary

point 0 is not needed. This gives a case where all boundary points are (AR).

Example 14. Let X be a Markov chain on {1, 2, 3, . . . } whose behaviour may

be described as follows: when started in x ≥ 1, it may jump up to x+ 1, or jump

catastrophically back to state 1, or disappear from the state space. Such a process

was called a pure birth process with catastrophes by Pakes (1995). In that paper,

he gave conditions under which the point +∞ is (AP), (AR), or neither. When

this last possibility occurs, the point +∞ can be a holding point (where the process

waits for an exponentially distributed amount of time before jumping), or else it

might split up into several distinct boundary points (this occurs when Px(ζ > t)

oscillates as x→ +∞).

4. Yaglom limits

In this section, we end the analysis of (ks) and prove the existence of Yaglom

limits.

Let D be the support of the initial probability measure ν. We define

D̃−s = d-closure of (−∞,−s]×D, D̃−∞ = ∩s>0D̃−s.

The representing measure ξs of ks (Proposition 3) is concentrated on the closed

set D̃−s. It follows that any weak limit point µ of the family (ξs) is concentrated on

D̃−∞. We are looking for conditions sufficient for having D̃−∞ = {z0}, a singleton.

This will not be the case generally, unless D is sufficiently small.

Proposition 15. Let X satisfy (A1)-(A3), and suppose that D = supp(ν) is com-

pact in E. If z ∈ D̃−∞ and K̃(t, x; z) 6≡ 0 is minimal parabolic, then there exists a

function ϕ∗ > 0 and a real number Λ such that

K̃(t, y; z) = e−Λtϕ∗(y), Âϕ∗ = −Λϕ∗.(13)
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Moreover, the following statements are equivalent:

(i) For some y ∈ D, lim s→−∞K̃(x; s, y) > 0 holds for all x in a set of positive

dt⊗ dm measure,

(ii) There exists a unique point z0 such that D̃−∞ = {z0} and K̃(t, x; z0) is a

nontrivial minimal parabolic function, hence of the form (13),

(iii) For every y ∈ D, (t, x) ∈ E,

lim
s→∞

pt+s(y, x)/Py(ζ > s) = e−Λtϕ∗(x).(14)

Proof. Since the functions (t, x) 7→ pt+t0(x, y) are parabolic for all y ∈ E on

(−t0,∞) × E, Assumption (A2) implies the existence of some constant C(r) such

that, for all t > 1,

sup
x∈D

pt(x, y) ≤ C(r) inf
z∈D

pt+r(z, y).

Using (5), this can be written

p̂t(y, x) ≤ C(r)p̂t+r(y, z), y ∈ E;x, z ∈ D; t > 1.

This last inequality is identical to Assumption (A4) of (Breyer, 1998b) if we replace

the set N there by D. The proof proceeds now identically, mutatis mutandis, to

the proofs of Propositions 10 and 15 of that paper.

The conclusions of Proposition 15 hold when X has a symmetrizing measure (see

Breyer, 1998b).

Theorem 16. Let (A1)-(A3) hold, and ν have compact support. If (νt) is tight

and (ii) of Proposition 15 holds, then the Yaglom limit (1) exists.

Proof. By Proposition 3, any limit point k of (ks) can be written

k(t, x) =
∫
K̃(t, x; y)ξ(dy),

where ξ is the weak limit (in the Martin topology) of some sequence ξsn . Since

the latter is concentrated on D̃−sn , it follows that ξ(D̃−∞) = 1. Since k > 0, the

measure ξ is concentrated on the parabolic boundary points z0 ∈ D̃−∞ such that

K̃(·; z0) > 0. By uniqueness of z0, we see that k is independent of the subsequence

sn, whence by Lemma 5, the Yaglom limit exists.
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In cases when ν charges all of the state space E, all we can deduce from Propo-

sition 15 is that the weak limit point ξ is concentrated on F̃−∞. This set usually

consists of a large number of points, and by choosing the initial distribution ν

appropriately, ξ can often be made to charge any given one, as the next example

shows. Compare it with Example 16 of Breyer (1998b).

Example 17. Let Xt = Wt − αt, where W is a one-dimensional Brownian

motion, and X is killed upon first leaving (0,∞). The drift is towards zero, i.e.

α ≥ 0. It is well known (Revuz and Yor, 1991) how to transform the Brownian

motion into X by a Girsanov transformation. In particular, suppose that (Pt) is

the semigroup of Brownian motion B, killed upon leaving (0,∞). The semigroup

(Qt) of X is then given by the formula

Qt(x, dy) =
1

e−αx
Pt(x, dy)e−α

2t/2e−αy, t > 0, x > 0.

Stated differently, the spacetime process (T0−t,Xt) is the g-transform of (T0−t, Bt),

with g(t, x) = eα
2t/2e−αx. Thus any excessive function h for (T0 − t,Xt) can be

written h = k/g for some excessive function k of (T0 − t, Bt). We can use this

observation to compute the minimal parabolic Martin boundary of X in terms of

that of B. The latter is described in (Doob, 1984, p. 375); see also Example 16 of

Breyer (1998b). For any τ < 0, set

Kg0(t, x; τ) ∝


x√

2π(t−τ)3
exp
(
− (x−α(t−τ))2

2(t−τ)

)
if t > τ,

0 if t ≤ τ,
,

and
∫
Kg0(0, x; τ)ν(dx) = 1. Any Martin sequence (sn, yn)→ (τ, 0) converges to the

boundary point associated with Kg0(·; τ). For any γ ≤ 0, put c = (γ2 − α2)/2, and

Kg1(t, x; γ) ∝

e
cteαx sinh(

√
|α2 + 2C| · x) if c > −α2/2,

ectxeαx if c = −α2/2.

Once again, we normalize by requiring
∫
Kg1(0, x; γ)ν(dx) = 1. Any Martin se-

quence (sn, yn) with limn→∞(sn, yn/sn) = (−∞, γ) converges to the boundary

point associated with Kg1(·; γ).

Using the fact that the measure m(dx) = e2αxdx is symmetrizing, we find im-

mediately that for the time reversal X̂ of X, the part Ẽ−∞ of the parabolic Martin
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boundary consists of the normalized minimal functions

K̃g1(t, x; c) ∝

e
cte−αx sinh(

√
|α2 + 2c| · x) if c > −α2/2

ectxe−αx if c = −α2/2,

where
∫
K̃g1(0, x; c)dx = 1. The measures µc(dx) = K̃g1(0, x; c)dx are the quasista-

tionary distributions of X. Note that this agrees with results of Martinez and San

Martin (1994).

Suppose now that we choose the initial distribution ν in Proposition 3 to be µc,

which is not compactly supported. An easy calculation shows that

kr(t, x) = ect(dµc/dx)(x), t > −r.

The Yaglom limit then becomes

lim
t→∞

Eµc(f(Xt) | ζ > t) = 〈µc, f〉.

Here any Martin sequence (sn, yn) with limn→∞(sn, yn/sn) = (−∞, γ) converges

to the minimal boundary point associated with the function K̃g1(·, c) where c =

(γ2 − α2)/2 as before. To force the Yaglom limit to become νt ⇒ µ−α2/2 (that

is, the miminal quasistationary distribution), we need to have Martin sequences

(sn, yn) such that limn yn/sn = 0. This is true whenever ν is compactly supported,

as described in Proposition 15.
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