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Abstract. Consider a Markov process X with finite lifetime ζ. In this paper,

we derive sufficient conditions which allow the conditioning of X to an infinite

lifetime. This is accomplished by showing the weak convergence, as s → ∞,

of the laws of (Xr : r ≤ t | ζ > s).

1. Introduction

Markov processes with finite lifetimes arise routinely in Applied Probability. The

lifetime is typically a stopping time of the process, marking a transition which is

being excluded. As an example, one may be interested in a diffusion before it hits

a specified boundary, and so identify the lifetime with this hitting time.

Sometimes, the lifetime is finite but an order of magnitude larger than the time

scale of the investigation. This occurs for certain epidemic models (N̊asell, 1995)

where extinction of the infected population is certain, but measured in millions of

years. The Markov process X measuring the number of infectives quickly settles

down to a seemingly stationary regime (this is known as quasistationary behaviour),

and the extinction event occurs as a result of a large deviation. On a human time

scale, the properties of this process are well described by those of a certain condi-

tioned process, constructed from X by conditioning on the event that extinction is

arbitrarily distant.

In this paper, we shall be interested in a generalisation of this idea. Let X be

a Markov process with lifetime ζ. We study the feasibility of defining a process Y

as the weak limit, on finite time intervals [0, t], of the processes (Xr : r ≤ t | ζ > s)
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as s→∞. The process Y can be viewed as X, conditioned on the event {ζ =∞},

even though this event has in many interesting cases probability zero.

This problem has been considered previously by various authors, among them

Darroch and Seneta (1967), when X is a Markov chain with a finite state space,

Jacka and Roberts (1994), Jacka et al. (1997) and Schrijner and van Doorn (1997),

when X is a birth-death process, Collet et al. (1995), McKean (1963) and Jacka and

Roberts (1997) in the case when X is a one-dimensional diffusion, and Pinsky (1985)

in the multidimensional diffusion case under reversibility.

The connection between the above conditioned processes and (quasistationary)

limiting conditional distributions are varied. Sometimes, the latter arise as limiting

distributions for the former (Pollett, 1988). In a follow-up (Breyer, 1998b) to

the present paper, a connection which arises by time reversal will be investigated.

Jacka and Roberts (1995) have shown that the existence of a limiting conditional

distribution implies the existence of the conditioned process for chains.

Conditioned processes of the type we study here also arise outside the literature

on quasistationarity. The best known example to the author concerns the interpre-

tation of the three dimensional Bessel process as a Brownian motion, conditioned

on avoiding the origin. See papers by McKean (1963), Williams (1974), and Pitman

(1975).

The plan of this paper is as follows: Section 2 introduces notation and the

basic Assumption (A1) on X. We also discuss links between the spacetime Martin

boundary and the Strong Ratio Limit Property. In Section 7, we prove the weak

convergence to the process Y , under Assumptions (A1)-(A4) (Theorem 21). In the

other sections, we introduce and discuss the remaining Assumptions, and prove

various technical results. Assumptions (A2) and (A3) are introduced in Section 4,

and Assumption (A4) in Section 5.

2. Notation, spacetime boundaries and the SRLP

Throughout the remaining sections, we shall fix a Strong Markov process X with

right continuous sample paths, locally compact state space E, and lifetime

ζ = inf{t > 0 : Xt /∈ E} <∞.
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The law of X given X0 ∼ ν is denoted Pν , and (Ft) is the usual completed filtration.

We shall also suppose that the semigroup (Pt) of the process admits a reference

measure, i.e.

Assumption (A1): There exists a Radon measure m on E (finite on compacts)

such that

Ex[f(Xt), ζ > t] =
∫
pt(x, y)f(y)m(dy), f ≥ 0,

and (t, x, y) 7→ pt(x, y) > 0 is jointly continuous.

Note that we have made an implicit assumption of irreducibility in the above.

While X is the process of interest, many calculations will be performed on an

auxiliary process, the (backward) spacetime process X. This is the Markov process

with state space E = (−∞, 0] × E which, when started with X0 = (T0, X0) say,

satisfies Xt = (T0 − t,Xt); Sharpe (1988) makes an in-depth study of X. Clearly

also, the lifetime ζ of X coincides with ζ, the lifetime of its second component X.

Let ν be some probability measure on E such that the map

(t, y) 7→
∫
ν(dx)pt(x, y)

is continuous on [0,∞)× E. The spacetime Martin kernel with normalization ν is

the function K : E × E → [0,+∞] given by

K(t, x; s, y) =
1(−∞,t)(s)pt−s(x, y)∫

ν(dz)p−s(z, y)
, (t, x), (s, y) ∈ E.(1)

Recall that, given a Markov process X with transition function (Pt), a Borel

function f : E → [0,+∞] is called excessive for X if it satisfies

Ptf ≤ f and lim
t↓0

Ptf = f.

It is called minimal if, whenever g is excessive and satisfies g ≤ f , there exists a

constant c such that g = c · f . For y ∈ E, the function K(·; y) is minimal excessive

for the spacetime process X (see Meyer, 1968).

Let now η : E → R be any dt ⊗ dm integrable function. We define a metric on

E by

d(y, z) =
∫

1 ∧
∣∣K(t, x; y)−K(t, x; z)

∣∣ η(t, x)dt⊗m(dx), y, z ∈ E.
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We shall denote by F the completion of E by d. It is well known (e.g. Doob, 1984),

p.197, or Meyer, 1968) that F is compact and that K(x, ·) has a continuous ex-

tension to F , for each x ∈ E. The continuity of K(x, ·) in the original topology,

which comes from the continuity of pt(x, y), implies that the original and Martin

topologies coincide on E. For each point y of the (spacetime) Martin boundary

∂F = F\E, the function K(·, y) is spacetime excessive; however, it may not always

be minimal.

We shall be mainly interested in the part F−∞ of the boundary which consists

of points y = limn→∞(sn, yn) where yn ∈ E and infn sn = −∞. There is a close

connection between these points and the Strong Ratio Limit Property (SRLP),

which states that there exist positive functions ϕ, ϕ∗ and a real number λ ≥ 0 such

that (see for example Anderson, 1991)

lim
t→∞

pt+s(x, y)
pt(x0, y0)

= e−λt
ϕ(x)ϕ∗(y)
ϕ(x0)ϕ∗(y0)

, x, y ∈ E.(2)

Indeed, if we choose ν in (1) as the point mass at x0, then the SRLP implies that

there exists a single point z ∈ F−∞ characterized by the two properties

(SRLP1): Any sequence of the form yn = (sn, y) with sn → −∞ converges to

z in the Martin topology, i.e. d(yn, z)→ 0,

(SRLP2): K(t, x; z) = e−λtϕ(x)ϕ∗(y)/ϕ(x0)ϕ∗(y0).

Note that (SRLP1) implies “half” of (SRLP2):

Proposition 1. If (SRLP1) holds, then there exist λ and ϕ such that

K(t, x; z) = e−λtϕ(x)/ϕ(x0).(3)

Proof. By continuity of K, we have

K(t, x; z) = lim
s→∞

pt+s(x, y)
ps(x0, y)

, y ∈ E, t > 0.

Choosing t = u+ v and t = u, we find that

K(u+ v, x; z) = L(u)K(v, x; z), where L(u) = lim
s→∞

pu+v+s(x0, y)
pv+s(x0, y)

.

It is easy to see that L(u + u′) = L(u)L(u′) and L(0) = 1 whence it follows that

L(u) = e−λu for some λ. Then since K(0, x0, z) = 1 we get (3).
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The “first half” (SRLP1) will later be shown to imply the existence of a suitable

conditioned process. The full SRLP generally doesn’t follow from (SRLP1). Indeed,

notice that (2) is preserved by the transformation pt(x, y) 7→ pt(y, x), and hence

by time reversal of X. To get the full SRLP, we would require that (SRLP1) also

hold with F replaced by the corresponding Martin boundary of the reversed process

X̂t = Xζ−t.

3. Integral representation

In this section, we take up a study of the class of functions hs : R × E → R

defined as follows:

hs(t, x) =


Px(ζ>s+t)
Pν(ζ>s) x ∈ E, s > 0, t ≥ −s

Pν(ζ > s)−1 x ∈ E, s > 0, t < −s.
(4)

We shall only be interested in the values of this function when restricted to E. Note

that ∫
hs(0, x)ν(dx) = 1, s > 0.(5)

Moreover, the function hs is spacetime excessive, as can be easily checked. To

describe hs, we shall use the following concept.

Definition 2. A subset N ⊂ E is called a cemetery neighbourhood if

lim
t→ζ

1N (Xt) = 1 a.s.

for all starting points x ∈ E.

There always exists at least one cemetery neighbourhood, namely N = E. The

definition states that the process spends the last segment of its lifetime in N .

Example 3. Suppose X is a Brownian motion killed upon leaving the unit ball

E = {x : ‖x‖2 < 1}. On account of the continuity of sample paths, any annulus

N = {x : ε < ‖x‖2 < 1} is a cemetery neighbourhood.

Example 4. Let B be a Brownian motion on E = {x : ‖x‖2 < 1} as in the

previous example, and let c(x) > 0 be a bounded function on E. Define a Markov

process X by killing B according to the additive functional At =
∫ t

0
c(Bs)ds. The
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semigroup of X is given by the formula

Ex(f(Xt), ζ > t) = Ex(f(Bt)e−
∫ t
0 c(Bs)ds, T∂E > t), x ∈ E,

here T∂E = inf{t > 0 : |Bt| = 1}. If U is any nonempty open subset of E, the

probability that Xt belongs to U at its moment of death is strictly positive. Hence

the only cemetery neighbourhood is N = E.

Example 5. Let Y be a Markov chain on E = {0, 1, 2, 3, . . . } and suppose

that Y gets absorbed in 0 in a finite time. Define X as the Markov chain on

E = {1, 2, 3, . . . } which is constructed by killing Y at the first hitting time of state

0. A cemetery neighbourhood is given by the set of states from which the process

Y can directly jump to zero, namely

N = {y > 0 : qy0 > 0};

here (qij) is the q-matrix of Y . The set we defined is clearly the smallest possible

cemetery neighbourhood.

Example 6. Let X be an explosive pure birth process on the countable set

E = {1, 2, 3, . . . }. The lifetime of X coincides with the explosion time, that is

ζ = inf{t > 0 : |Xt| =∞}.

A typical cemetery neighbourhood is given by N = {n, n + 1, n + 2, . . . }. There

exists no ‘smallest’ such set.

We resume the study of hs. Let †(X) denote the class of all cemetery neighbour-

hoods of X. We put

N−s = d-closure of (−∞,−s]×N, N−∞ = ∩s>oN−s.

Lemma 7. For every s > 0, there exists a probability measure µs, concentrated on

N−s(X) = ∩{N−s : N ∈ †(X)},

such that

hs(t, x) =
∫
K(t, x; y)µs(dy).(6)

Proof. Since the function hs is excessive for X and satisfies (5), the standard rep-

resentation theory for normalized excessive functions (see Meyer, 1968) asserts the
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existence of a probability µs on F such that (6) holds. This measure can always be

chosen such that

hs(x)P
hs
x (Xζ− ∈ A) =

∫
A

K(x, y)µs(dy), A ⊂ F , x ∈ E.(7)

Here P
hs is the law of the hs-transform of X, i.e. the Markov process on E with

transition function (P
hs
t ) given by

P
hs
t (x, dy) = hs(x)−1P t(x, dy)hs(y),

and where (P t) is the transition function of X. It remains only to show that

µs(N−s) = 1 for every cemetery neighbourhood N ∈ †(X). Now for any x =

(t, x) ∈ E,

P
hs
x (ζ > s) = hs(t, x)−1

Ex[hs(t− s,Xs), ζ > s]

= Ex[PXs(ζ > t), ζ > s]/Px(ζ > t+ s) = 1.

Moreover,

lim
u→∞

P
hs
x (ζ > u) = lim

u→∞
Ex[hs(t− u,Xu), ζ > u]/hs(t, x)

= lim
u→∞

Px(ζ > u)/Px(ζ > t+ s) = 0,

and we deduce that P
hs
x (−s ≤ ζ < ∞) = 1. Now a rephrasing of Definition 2 in

terms of the spacetime process X gives

P(t,x)(Xζ− ∈ N−t, ζ <∞) = 1.

Hence for r < −s,

P
hs
x (Xζ− ∈ N−s, ζ <∞) = P

hs
x (Xζ− ∈ N−s, r < ζ <∞)

= Ex[hs(Xr), Xζ− ∈ N, r < ζ <∞]/hs(x)

= Ex[hs(Xr), ζ > r]/hs(x) = 1.

Thus by (7), taking A = N−s, we find

hs(x) =
∫
N−s

K(x, y)µs(dy).
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Now (5) and Fubini’s theorem gives

1 =
∫
hs(0, x)ν(dx) =

∫
N−s

(∫
K(0, x; y)ν(dx)

)
µs(dy)

≤ µs(N−s).

This completes the proof, as N was arbitrary.

Recall that F is compact. This implies that the family of measures (µs) above

has at least one weak limit point, µs(k) ⇒ µ say. If N ∈ †(X), then it follows that

1 = lim
k→∞

µs(k)(N−r) ≤ µ(N−r), r > 0,

and µ must therefore be concentrated on the set N−∞(X). Let

h(t, x) =
∫
K(t, x; y)µ(dy).(8)

SinceK(t, x; ·) is continuous on the compact set N−t, it follows by weak convergence

and (6) that hs(k)(t, x)→ h(t, x).

The function h is excessive (for X), but we have as yet no way of checking that

h 6≡ 0. Indeed, whereas each function hs satisfies (5), Fatou’s lemma only shows

that
∫
h(0, x)ν(dx) ≤ 1.

To see that this is a real possibility, suppose that ν is a quasistationary distri-

bution for X. Thus there exists a real number λ ≥ 0 such that Pν(ζ > t) = e−λt.

Then clearly

hs(t, x) = eλsPx(ζ > t+ s).

If X is λ-transient, this tends to zero as s→∞, giving h ≡ 0.

4. Parabolic functions and further assumptions

To get a sufficient condition for h 6≡ 0, we shall need to discuss parabolic func-

tions.

Definition 8. A locally bounded Borel function f is said to belong to the domain of

the local martingale generator A of X if there exists a Borel function g(x) =: Af(x)

such that the process

Mf
t = f(Xt)1(ζ>t) − f(X0)−

∫ t∧ζ

0

Af(Xs)ds
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is, for each (Ω, (Ft),Px), a right continuous local martingale up to ζ in the following

sense: there exists a sequence of stopping times Tn ↑ ζ such that Mf
t∧Tn is a Px

martingale for each x ∈ E.

Note that the operator A is in general multivalued, as Af can be arbitrarily

modified on a set of potential zero. Two standard examples of generators of this

type are as follows:

• If X is a diffusion on a subset of Rd, then by Ito’s formula we have A = L, a

second order differential operator. Its domain contains all C2 (not necessarily

bounded) functions.

• If X is a Markov chain on E = {1, 2, 3, . . . } then A = Q, where Q = (qij) is

the q-matrix of X. Here the domain of A includes all functions f : E → R

such that Af(i) =
∑
j qijf(j) <∞ for all i ∈ E.

A function u : (a, b)× E → [0,+∞] is called parabolic (for X) if

∂

∂t
u(t, x) = Au(t, x) in (a, b)× E

A standard example of a parabolic function in (0,∞)×E which satsifies u(0, ·) = f

is the function

u(t, x) = Ex[f(Xt), ζ > t], t ≥ 0, x ∈ E.

This immediately shows that the functions hs of (4) are parabolic in (−s,∞) ×

E. One may wonder if the limit functions h of the previous section are therefore

parabolic in (−∞,∞)×E. This will be the case under the following assumptions:

Assumption (A2): The process X satisfies a parabolic Harnack inequality: For

any compact sets K ⊆ E, K ⊂ (0,∞)× E, let s > sup{t : (t, x) ∈ K}. Then

there exists a constant C = C(K,K) such that every function u that is

parabolic in (0,∞) satisfies

sup
(t,x)∈K

u(t, x) ≤ C · inf
y∈K

u(s, y).

Assumption (A3): For each compact set K ⊂ E, there exists another compact

set K ′ ⊂ E such that

Px(XTKc ∈ K
′, ζ > TKc) = 1, x ∈ K,

where TKc = inf{t > 0 : Xt /∈ K} is the first exit time from K.
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Assumption (A2) holds for many processes, including diffusions on regular do-

mains and all minimal Markov chains on a countable state space (for the latter, see

Breyer, 1998a). Assumption (A3) is a bounded jump condition; it clearly holds for

diffusions since their sample paths are continuous, but (A3) is also satisfied by any

Markov chain on countable state space whose q-matrix is such that for fixed x, qxy

is nonzero for only a finite number of entries. In that case we can take

K ′ = {y : qxy 6= 0, x ∈ K}.

Lemma 9. Let (A1)-(A3) hold and suppose that the probability ν is compactly

supported. Then every limit point h of the family (hs), as s → ∞, is nonzero,

parabolic in (−∞,∞)× E, and satisfies
∫
h(0, x)ν(dx) = 1. Moreover, t 7→ h(t, x)

is decreasing.

Proof. From (Breyer, 1998a), it follows that every limit function h is parabolic

in (−∞,∞) × E. The functions h(t, x) are decreasing in t because each function

hs(t, x) is. In particular then, by (A2), there exists a constant C such that

sup{hs(0, x) : s > 0, x ∈ supp(ν)} ≤ C.

Thus by dominated convergence , we have∫
h(0, x)ν(dx) = lim

s→∞

∫
hs(0, x)ν(dx) = 1.

A posteriori, this implies that h is nonzero.

5. Minimal parabolic functions in the set N−∞(X)

We will now characterize the limit functions h in terms of eigenfunctions of

A. Before stating the main application (Lemma 14), we need some preliminary

technical results.

Assumption (A4): There exists a cemetery neighbourhood N with the follow-

ing property: for each r > 0, there exist C(r), T (x) > 0 such that

pt(x, y) ≤ C(r)pt+r(x, z), t > T (x), x ∈ E, y, z ∈ N.

Examples of processes satisfying (A4) will be given below.

The following is an adaptation in our context of a result for diffusions due to

Koranyi and Taylor (1985).
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Proposition 10. Let (A4) hold for some N ∈ †(X), and suppose that y ∈ N−∞.

If K(·, y) 6≡ 0 is parabolic, then

K(t, x; y) = e−λtg(x),

where g is a minimal positive solution to the equation Ag = −λg in E.

Proof. By the assumption, if s < t ≤ 0 < r, s < −T (x),

K(t− r, x; s, y) =
pt−r−s(x, y)∫
ν(dx)p−s(x, y)

≤ C(r) · pt−s(x, y)∫
ν(dx)p−s(x, y)

= C(r)K(t, x; s, y).

Suppose now that w(x) = limn→∞K(x; yn) is a minimal parabolic function corre-

sponding to a sequence yn = (sn, yn) satisfying limn sn = −∞ and yn ∈ N for all n.

For any r > 0, the function wr(t, x) = w(t− r, x) is also parabolic in (−∞, 0]× E,

and the above computation shows that wr(t, x) = w(t − r, x) ≤ C(r)w(t, x). By

minimality of w (see Section 2), this means there exists a constant L(r) such that

w(t, x) = L(r)w(t−r, x). Now L satisfies L(a+ b) = L(a)L(b) and L(0) = 1. More-

over, L is continuous since t 7→ w(t, x) is. Hence L(t) = e−λt for some constant

λ ∈ R, and then w(t, x) = eλtw(0, x). Finally, since w is parabolic, it satisfies the

equation

∂

∂t
w(t, x) = Aw(t, x) in (−∞, 0]× E,

and hence the function g(x) = w(0, x) is an eigenfunction of A with eigenvalue −λ.

For the minimality, put g = k + l where both k and l are positive eigenfunctions

with eigenvalue −λ. The functions k′(t, x) = e−λtk(x) and l′(t, x) = e−λtl(x) are

both parabolic, and dominated by w; hence they are constant multiples of w, and

multiplying by eλt shows that k and l are both multiples of g.

Note that in the above, we do not require the full force of (A4), but merely that

pt(x, y) ≤ C(r) · pt+r(x, y) for all y ∈ N . We now give some examples of processes

satisfying Assumption (A4).

Example 11. Let X be a uniformly elliptic diffusion (bounded coefficients) on

a bounded open set E with regular boundary ∂E; the transition density pt(x, y)
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(with respect to Lebesgue measure) is the fundamental solution of the parabolic

operator A− ∂/∂t, where

Af(x) =
1
2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) +

d∑
j=1

bj(x)
∂

∂xj
f(x), f ∈ C2(E)

The regularity of the boundary ensures that limx→∂E pt(x, y) = 0. The function

(t, x) 7→ pt(x, y) is of course parabolic in (0,∞)× E. If we let

Âf(x) =
1
2

d∑
i,j=1

Dij(aijf)(x)−
d∑
j=1

Dj(bjf)(x)

be the formal adjoint of A, then (t, y) 7→ pt(x, y) is parabolic for the operator

Â. With a suitable choice of coefficients, the parabolic Harnack inequality will

hold for Â with K the closure of D (see Friedman, 1964), and applying this to

(t, y) 7→ pt(x, y) gives Assumption (A4).

The above example can be modified for diffusions on unbounded domains E,

provided a sufficiently small cemetery neighbourhood exists. The following example

illustrates the procedure.

Example 12. Let X be Brownian motion on E = (0,∞), killed upon first hit-

ting zero. Its generator is (1/2)d2/dx2 on C2
K((0,∞)). The set (0, 1) is a cemetery

neighbourhood, and the transition function of X is,

pt(x, y) =
√

2/πt exp
(
−x

2 + y2

2t

)
sinh(xy/t), x, y, t > 0.

Since

pt(x, y)
pt+r(x, y)

=

√
t+ r

t
· sinh(xy/t)

sinh(xy/t+ r)
,

we can take C(r) = 4, provided we take

T (x, r) = r ∨ inf
{
t > 0 :

sinh(x/t)
sinh(x/t+ r)

≤ 2
}
.

It is straightforward to generalize these two examples to the case when X is a

uniformly elliptic diffusion on Rd, when the lifetime coincides with the hitting time

of some compact set with regular boundary. We give one further example, within

the realm of Markov chains.

Example 13. Let X be an irreducible Markov chain on a countable state space,

and suppose that a finite cemetery neighbourhood N exists. Assumption (A4)
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must hold, since if pt(x, y) is the density of the transition function with respect to

counting measure,

pt+r(x, y) ≥ pt(x, z)pr(z, y), x ∈ E, y, z ∈ N,

and we can take C(r)−1 = minz,y∈N pr(z, y) > 0 by irreducibility. This argument

also shows, by taking y = z, that the conclusion of Proposition 10 holds as soon as

there exists a (not necessarily finite) cemetery neighbourhood N satisfying

sup
y∈N
|q(y)| < +∞.

In particular, this is always true when the q-matrix is bounded.

We resume our study of the family (hs).

Lemma 14. Let Assumptions (A1)-(A4) hold, and suppose that the probability

measure ν is compactly supported. If h is a limit point of (hs), then there exists a

probability measure ξ and a family of functions (gλ : λ ≥ 0) such that Agλ = −λgλ,

〈ν, gλ〉 = 1, and

h(t, x) =
∫
e−λtgλ(x)ξ(dλ).(9)

Proof. Let h be a limit point of (hs). It can therefore be represented, via (8), by

some probability µ on F satisfying

µ

(
∩{N−∞ : N ∈ †(X)}

)
= 1.(10)

The functions K(·, y) with y in the support of µ may not all be minimal, however

it is always possible to represent h by another measure µ′ which is concentrated on

minimal functions K(·, z), as follows (Meyer, 1968):

h(x)P
h

x(Xζ− ∈ A) =
∫
A

K(x; z)µ′(dz).

Since h is parabolic, the same is true for the functions K(·; z) in this representation.

We will show that µ′ also satisfies (10), which will establish the existence of minimal

parabolic functions of the form K(·; z) with z ∈ N−∞, and then, via Proposition

10, the representation (9). Now consider the event ΛN = {Xζ− ∈ N−∞}, where
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N ∈ †(X). We have P
h

x(ΛN ) = 1, for if Γ is any event in Fr, r > 0, then

P
h

x(Γ ∩ ΛN ) = Ex[h(Xr),Γ ∩ ΛN , ζ > r]/h(x)

= Ex[h(Xr),Γ, ζ > r]/h(x)

= P
h

x(Γ),

by Definition 2. Thus we have

1 = P
h

x(ΛN ) =
∫
P
K(·;z)
x (ΛN )µ′(dz),

which gives P
K(·;z)
x (ΛN ) = 1 for almost every z in the support of µ′. Now (7) holds

also when hs is replaced by K(·; z). Taking A = N−∞ in this equation, we get

that the spacetime excessive function K(·; z) is represented by a measure on N−∞.

This is of course (by minimality) the point mass at z, establishing that z ∈ N−∞.

Repeating this argument for almost every z in the support of µ′ gives (10) for µ′.

The fact that λ ≥ 0 follows because t 7→ h(t, x) is decreasing, by Lemma 9. The

normalization 〈ν, gλ〉 = 1 is an easy consequence of 〈ν, h(0, ·)〉 = 1 and Fubini’s

theorem applied to (9).

It is important to realize that the fact that h is parabolic can be made stronger.

Recall from the proof of Lemma 7 that Phsx (ζ ≥ s) = 1. Hence for s > r,

Ex[hs(Xr), ζ ≤ r] = 0 and Fatou’s lemma gives Ex[h(Xr), ζ ≤ r] = 0, so that

P
h

x[ζ <∞] = 0.

This last statement is equivalent to the function h(t, x) being invariant for X, i.e.

P th = h. Equivalently, almost every function gλ entering in the representation (9)

must satisfy Ptgλ = e−λtgλ.

6. When is N−∞(X) a singleton?

In the course of the proof of Lemma 14, it was shown that N−∞(X) always

contains a minimal parabolic point z0. In this section, we investigate cases when

the set is in fact a singleton. In such a case, we can then assert by Lemmas 9 and 14

that

lim
s→∞

Px(ζ > t+ s)
Pν(ζ > s)

= K(t, x; z0) = e−λtgλ(x).(11)

We begin with a general result:
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Proposition 15. Under Assumptions (A1)-(A4), the following three statements

are equivalent:

(i) For some y ∈ N ,

lim s→−∞K(x; s, y) > 0

holds for all x in a set of positive dt⊗ dm-measure,

(ii) The set N−∞ contains a single nontrivial, minimal parabolic boundary point

z0,

(iii) For every sequence yn = (sn, yn) such that sn → −∞ and yn ∈ N for all n,

lim
n→∞

K(x; yn) = K(x, z0) = e−λtg(x).

Proof. (i) ⇒ (ii): By Assumption (A4), if ε > 0 is fixed, we have the inequality

K(t, x; s, y) =
pt−s(x, y)∫

ν(dw)p−s(w, y)

≤ C(ε)−2 pt−s+ε(x, z)∫
ν(dw)p−s−ε(w, z)

= C(ε)−2K(t+ 2ε, x; s+ ε, z),

for all y, z ∈ N and t − s,−s > T (x). Now let (sn + ε, zn) → z, where z is

any nonzero minimal parabolic boundary point belonging to N−∞. The function

k(x) = lim s→−∞K(x; s, y) satisfies P rk ≤ k by Fatou’s lemma. It is thus bounded

below by the excessive function k̃ = limr→0 P rk, from which it differs at most

on a set of dt ⊗ dm-measure zero; the minimality of z together with the bound

k(t − 2ε, x) ≤ C(ε)−2K(t, x; z) implies that k̃(t − 2ε, x) is a constant multiple of

K(t, x; z). Since k̃ is necessarily parabolic, we have k̃(t, x) = ecεk(t−2ε, x) for some

constant c, whence k̃ is also a multiple of K(·; z). If z′ is another minimal parabolic

boundary point, the same argument shows that K(·; z′) is a constant multiple of k̃,

and hence of K(·, z). Thus there exists at most one mimimal point in N−∞, and

hence all sequences converge to it.

(ii) ⇒ (i): Conversely, if there are two distinct minimal points z, z′ ∈ N−∞,

then k̃(·) must be proportional to both K(·; z) and K(·; z′), and hence identically

zero.

Here are now some examples of processes.
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Example 16. Let X denote the one dimensional Brownian motion on E =

(0,∞), killed upon first hitting zero. We saw earlier that this process satisfies

(A1)-(A4). Since its generator is given by A = (1/2)d2/dx2, positive solutions to

Ag = −λg exist only for λ ≤ 0. The solutions to Ag = 0 are given by g(x) = a+bx,

for some positive constants a and b. If b = 0, g is a multiple of the excessive

function 1, which is not invariant for X since the process has finite lifetime under

the h-transformed law P1
x = Px. The Martin compactification of X is well known to

be [0,+∞], and the excessive function 1 corresponds here to the point 0. If a = 0,

then g is a multiple of the excessive function x. Now this function is invariant,

since the corresponding h-transform (with h(x) = x) is a three dimensional Bessel

process with generator

Ahf(x) = h(x)−1A(hf)(x) =
1
2
d2

dx2
f(x) +

1
x

d

dx
f(x),

and it is well known that this process is nonexplosive. Thus we see that N−∞(X)

consists of only the point z0 for which K(t, x; z0) = x/〈ν, x〉. In terms of the Martin

boundary of X, the excessive function x corresponds to the point +∞. We end this

example with some further remarks on the parabolic Martin boundary, taken from

Doob (1984, p. 375). For every τ < 0, set

K0(t, x; τ) ∝


x√

2π(t−τ)3
exp
(
− x2

2(t−τ)

)
if t > τ,

0 if t ≤ τ,
,

∫
K0(0, x; τ)ν(dx) = 1.

For each γ ≤ 0, set

K1(t, x; γ) ∝

sinh(−γx) exp
(
γ2t
2

)
if γ < 0,

x if γ = 0,
,

∫
K1(0, x; γ)ν(dx) = 1.

The Martin sequences are as follows: if yn → (τ, 0), then limnK(x, yn) = K0(x; τ);

if sn → −∞ and yn/sn → γ ≤ 0, then limnK(x, yn) = K1(x, γ), and if either

yn → +∞ with yn/(1 + |sn|)→ +∞ or else sn → 0 with no restriction on yn, then

limnK(x, yn) = 0. Every positive parabolic function u with lim s→0u(s, x) < +∞

then has the Martin representation

u(t, x) =
∫
K0(t, x; τ)ξ0(dτ) +

∫
K1(t, x; γ)ξ1(dγ).
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For the function which interests us, namely hs(t, x), the quickest way to get this

representation explicitly is to use the Bachelier-Lévy formula

Px(ζ > r) =
∫ ∞
r

x√
2πu3

exp
(
−x2/2u

)
du,

and make the change of variable τ = r − u. One then finds that

Px(ζ > t+ s)
Pν(ζ > s)

=
∫ s

−∞
K0(t, x; τ)

(∫
ν(dz)

z√
−2πτ3

exp(z2/2τ)dτ
)

=
∫
K0(t, x; τ)1(−∞,s](τ)µs(dτ),

and a representing probability measure µs is concentrated on E−s as predicted. The

set E−∞ here consists of the half-line γ ≤ 0, where each point γ is identified with

the function K1(·; γ). A cemetery neighbourhood is given by the set (0, 1) ⊂ E.

Now the points belonging to N−∞ must be arrived at through sequences (sn, yn)

such that yn < 1 for all n. In view of the characterization of Martin sequences

above, every such sequence must give the function K1(t, x; 0) = x/〈ν, x〉.

In the example above, the fact that Ag ≤ −λg has positive solutions only when

λ ≤ 0 is a consequence of the fact that the Brownian motion X has zero decay

parameter and in fact is zero-transient. (for the theory of decay parameters, see

Tuominen and Tweedie, 1979). Clearly, when a Markov process X has this prop-

erty, we can always identify the set N−∞, which belongs to the spacetime Martin

boundary of X, with a subset of the ordinary Martin boundary of X, as we have

done above, where N−∞ was identified with the point +∞ of [0,+∞].

Example 17. Suppose that X is positive λ-recurrent (definition in Tuominen

and Tweedie, 1979; see also Anderson, 1991, for chains). In this case, there exists

a unique positive solution ϕ to the equation Ag ≤ −λg, λ ≥ 0, and in fact Ptϕ =

e−Λtϕ, where Λ is the decay parameter of X (recall that X is the minimal process

with generator A). Two examples of positive λ-recurrent processes are Markov

chains on a finite set E = {1, . . . , n} and uniformly elliptic diffusions on a bounded

regular domain (see Breyer, 1997, Chapter 3). Both these examples satisfy (A1)-

(A4) with N = E, and we have

N−∞(X) = E−∞ = {z0}, K(t, x; z0) = e−Λtϕ(x)/〈ν, ϕ〉.
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Indeed, this follows by Proposition 15 (i), since the positive λ-recurrence implies

that

lim
t→∞

eΛtpt(x, y) = ϕ(x),

and so we have for t < 0:

lim
s→−∞

K(t, x; s, y) = lim
s→−∞

e−Λspt−s(x, y)∫
ν(dw)e−Λsp−s(w, y)

= eΛtϕ(x)/〈ν, ϕ〉 > 0.

Example 18. Let X be a uniformly elliptic diffusion on an open set E ⊂ Rd,

not necessarily bounded. Assume that the generator is in divergence form,

Af(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj

)
(x), f ∈ C2(E).

Bass and Burdzy (1992) have shown that, if the set E is given locally by the

graph of an Lp function with p > d − 1, then the following parabolic boundary

Harnack principle holds: for every u > 0, there exists C(u) such that

pa(y, x)
pa(z, x)

≥ C(u) · pb(y, v)
pb(z, v)

, a, b ≥ u,(12)

for all v, x, y, z ∈ E. See their paper and references therein for a precise definition

of Lp domains, and for other conditions ensuring the validity of (12).

Suppose now that a slightly weaker form of (12) holds, namely for v, x merely

belonging to N . Integrating both sides of (12) over y ∈ E with respect to the

measure
∫
ν(dw)pr(w, ·)m(·) and inverting gives

pa(z, x)∫
ν(dw)pa+r(w, x)

≤ C(u) · pb(z, v)∫
ν(dw)pb+r(w, v)

, a, b ≥ u;x, v ∈ N ; z ∈ E.

Changing variables according to t = −r, −s′ = a + r, −s′ = b + r we find

K(t, z; s′, x) ≤ C(u)K(t, z; s, v), and this is enough to guarantee that N−∞ contains

a single minimal boundary point. Indeed, let (sn, zn) converge to some minimal

z ∈ N−∞, and let (s′n, yn) converge to any parabolic point y in E−∞ with the

correct normalization. The inequality ensures that

eλ
′tg′(z) = K(t, z; y) ≤ C(u) ·K(t, z; z) = eλtg(z),

and the minimality of z ensures that these two parabolic functions are proportional.

Thus there exists a constant c such that eλ
′tg′(z) = c · eλtg(z). Integrating both
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sides with respect to ν(dz) gives c = 1, and hence y = z. Since y was arbitrary, the

set N−∞ must consist of a single minimal point.

Example 19. Suppose that X is a Markov chain on a countable state space

E, whose transition function is symmetric, i.e. pt(x, y) = pt(y, x) for the transition

density associated with m in (A1). In dealing with Markov chains, it is usual to

work with respect to counting measure, so that m has the representation m(A) =∑
x∈Am(x). Let us denote by pxy(t) the transition density of Pt(x, dy) with respect

to counting measure. We then have the formula pt(x, y) = pxy(t)/m(y), so that the

symmetry requirement becomes the formula

m(x)pxy(t) = m(y)pyx(t), x, y ∈ E.

Kendall (1959) showed the existence, for each x, y ∈ E, of finite signed measures

µ(x, y; dλ) on [Λ,∞) such that

pt(x, y) =
∫ ∞

Λ

e−λtµ(x, y; dλ).(13)

It is also known that the measure µx(dλ) := µ(x, x; dλ) is positive for x ∈ E,

and that, for each y ∈ E, µ(x, y; dλ) << µy(dλ), independently of x ∈ E. Take

N ∈ †(X) and let us now fix once and for all a state y0 ∈ N . We shall set ν equal to

the point mass at y0. Then the spacetime Martin kernel normalized by ν satisfies

K(t, y0; s, y0) =

∫∞
Λ
e−λ(t−s)µy0(dλ)∫∞
Λ
eλsµy0(dλ)

, s, t < 0.

We claim the following:

Proposition 20. Let X be an irreducible Markov chain on a countable state space.

We suppose that the transition function of X is symmetric, and that there exists a

finite cemetery neighbourhood N . If ν is a point mass, then N−∞(X) = {z0}.

Proof. Consider the probability measures on [Λ,∞) given by

γs(dλ) =
e−λsµ(dλ)∫∞

Λ
e−θsµ(dθ)

, s > 0.

Using the bound
∫∞

Λ
e−λsµ(dλ) ≥ e−(Λ+ε)sµ((Λ,Λ + ε]), it follows that

γs([Λ + ε,∞)) ≤ µ([Λ,Λ + ε))−1e(Λ+ε)s

∫ ∞
Λ+ε

e−λsµ(dλ),
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and this tends to zero as s → ∞. Consequently, the measures γs are tight, and

converge weakly to the point mass at Λ. If the normalizing measure is the point

mass at y0, it follows that

lim
s→−∞

K(t, y0; s, y0) = lim
s→∞

∫
e−λtγs(dλ)

= e−Λt > 0.

Since the set (−∞, 0)× {y0} clearly has positive dt⊗ dm-measure, Proposition 15

applies.

By the parabolic Harnack inequality, the proof above can easily be modified to

take into account the case of a measure ν with finite (i.e. compact) support. Note

also that in the above proof, the only hypothesis we have really used is that the

function t 7→ pt(y0, y0) is the Laplace transform of some finite positive measure.

Kijima (1993) showed that such a representation also holds for Markov chains which

are skip-free to the left on E = {1, 2, 3 . . . }. McKean (1956) proved a representation

similar to (13) for one dimensional diffusions (which are always symmetric). Again,

the analogue of Proposition 20 goes through.

7. Conditioned processes

Here, we shall use the theory developed in the previous sections to prove the

existence of a conditioned process.

Theorem 21. Let X be a Markov process with finite lifetime ζ such that Assump-

tions (A1)-(A4) hold, and suppose that ν is a compactly supported probability mea-

sure on E. If N−∞(X) = {z0}, let K(t, x; z0) = e−Λtϕ(x) with 〈ν, ϕ〉 = 1; then

lim
s→∞

Pν(dω | ζ > s) = e−Λtϕ(Xt(ω))1{ζ>t}(ω)Pν(dω) on Ft, t > 0.

The limiting law is that of a nonexplosive, time homogeneous Markov process, with

semigroup Qt(x, dy) = e−ΛtPt(x, dy)ϕ(y)/ϕ(x) and initial distribution g(x)ν(dx).

Proof. Let H denote any bounded Ft measurable random variable, t ≥ 0. By (11),

we have hs(t, x) → e−Λtϕ(x), and by the parabolic Harnack inequality (A2), this

convergence occurs boundedly on compact subsets of E. Now if TKc = inf{t >
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0 : Xt /∈ K} denotes the first exit time from a compact set K ⊂ E, the bounded

convergence theorem gives

lim
s→∞

Eν(H,TKc > t | ζ > s) = lim
s→∞

Eν

(
H,TKc > t,

PXt(ζ > s− t)
Pν(ζ > s)

)
= Eν [H,TKc > t, e−Λtϕ(Xt)].

We now dispense with the set {TKc > t} above. Taking H = 1 and remembering

that ϕ is Λ-invariant and satisfies 〈ϕ, ν〉 = 1,

lim
s→∞

Eν(TKc ≤ t | ζ > s) = 1− lim
s→∞

Eν(TKc ≤ t | ζ > s)

= 1− Eν [TKc ≤ t, e−Λtϕ(Xt)]

=
∫
ν(dx)

(
ϕ(x)− Ex[e−Λtϕ(Xt), TKc ≤ t]

)
= Eν [e−Λtϕ(Xt), ζ > t, TKc ≤ t]

= Q(TKc ≤ t).

Here Q is the law of the Markov process with transition function Qt and initial

distribution ϕ(x)ν(dx). Now

lim n→∞
∣∣Eν(H | ζ > rn)−

∫
HdQ

∣∣
≤ lim n→∞

∣∣∣∣∣Eν(H,TKc > t | ζ > s)−
∫
{TKc>t}

HdQ

∣∣∣∣∣
+ lim n→∞2 ‖H‖

(
Eν(TKc ≤ t | ζ > s) +Q(TKc ≤ t)

)
= 4 ‖H‖Q(TKc ≤ t),

and, since TKc ↑ ζ as K ↑ E and ζ = ∞ a.s. under Q, the right hand side can be

made arbitrarily small by choosing K arbitrarily large; the result follows.

Recall the last paragraph of Section 3. By choosing ν as a quasistationary

distribution (which can never be compactly supported, unless the process is Λ-

recurrent), we can force h ≡ 0. In that case, we also have

lim
s→∞

Pν(dω | ζ > s) = 0.

Consider now the following example, due to Jacka and Roberts (1995), of a

process for which the conditioning problem does not have a solution, irrespective of

how ν is chosen.



22 L.A. BREYER

Example 22. Let X be the Markov chain on E = {1, 2, 3, . . . } with nonconser-

vative q-matrix given by

q(x, y) =



−1 2−2 2−3 2−4 · · ·

2−2 −2−2

2−3 −2−3

2−4 −2−4

...
. . .


.

When started in state 1, X waits for an exponential time with mean 1 before either

jumping to state k with probability 2−k+1 or getting killed with probability 1/2.

In state k > 1, it first waits for an exponential time with mean 2k+1 and then

jumps back to state 1. Thus the process is irreducible, and the smallest cemetery

neighbourhood is given by N = {1}. Moreover, X is clearly symmetric, so that

N−∞ consists of at most one point. Nevertheless, there is no conditioned process.

Indeed, suppose that g(x) is a positive solution to the equation Qg = −λg. We

must therefore solve the system

−g(1) +
∞∑
k=2

2−kg(k − 1) = −λg(1),

2−kg(1)− 2−kg(k − 1) = −λg(k − 1), k ≥ 2.

Clearly the only solution is g(x) = 0. Now Proposition 10 guarantees that the min-

imal parabolic functions associated with points of N−∞ are of the form e−λtg(x);

thus there are no nonzero minimal parabolic points in N−∞ for this process, and

in particular the sequence (hs) cannot converge. The source of this failure lies in

the fact that, even though (A1), (A2), and (A4) are satisfied, Assumption (A3) is

violated. Thus we have uniqueness, but not existence of a nontrivial limit for (hs).

Here, the process can jump into each and every state from state 1.
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