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Abstract

Many of the stochastic processes used in Applied Probability are fundamentally

transient in nature. This occurs in population growth models such as branching

processes, where the number of individuals can become zero in a finite time; in

certain chemical reactions, where one of the reactants is eventually depleted; in

teletraffic and queueing models, with the phenomenon of multiple stable states,

and in interacting particle systems, where clustering can happen.

In all these models, there is a random time ζ which can be used to describe a

qualitative change in the behaviour of the representing process. Frequently, this

arises as follows: the evolving system is represented by a Markov process Xt and

the change occurs when Xt first enters an absorbing part of the state space. The

entry time can be finite, and very long. A typical example is an epidemic model,

for which the process representing the number of infected individuals never leaves

zero if once it reaches that state. Yet the time until this occurs may well be finite

and is often estimated in millions of years. In the meantime, the process appears

stationary. We call this phenomenon quasistationarity.

In realistic models of Applied Probability, the evolving state probabilities of

the process are rarely explicitly available. The analysis of the model therefore cen-

ters around certain well-chosen functionals of the process. The models described

above have all been investigated, among other approaches, using quasistationary

distributions ; see Pollett (1993) for a review.

The functionals which have proved to be of greatest interest in this context

are variously known as limiting conditional distributions, or Yaglom limits. These

are probability measures κ satisfying the relation

lim
t→∞

P(Xt ∈ A | ζ > t) = κ(A).

and can be viewed as a generalization of the concept of limiting distribution

associated with the positive recurrent case. Variations on these limits are possible,

leading in particular to the doubly limiting conditional distribution. It has been

realized recently (Pollett (1988), Jacka and Roberts (1995)) that the best way of
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iv Abstract

investigating this other distribution is via a certain conditioned process Y , related

to X by

lim
s→∞

P(Xt1 ∈ A1, . . . , Xtn ∈ An | ζ > s) = P(Yt1 ∈ A1, . . . , Ytn ∈ An).

I shall refer to this as simply the conditioned process. The two objects κ and Y

are fundamental, in that many other functionals of X and ζ can be derived from

them. They form the core of what I call the “quasistationary tool box”.

In this thesis, I consider the tool box from a very general point of view:

continuous time Markov processes on a general state space. I prove solidarity

results for the exponential decay of the transition function; this depends on an

assumption of ν-irreducibility, and generalizes the work of Kingman (1963) and

Tweedie (1974a) in discrete state space and discrete time respectively. The λ-

classification of the process is deduced, and some basic properties of λ-invariant

functions and measures are proved. There is presently no systematic account of

this type in the literature. I then describe the classical tool box theorems in cases

where X is classified as positive Λ-recurrent, and prove a “dual” version of a test

for this, due to Tweedie (1974b). A counterexample is given to show that the

existence of Yaglom limits requires more conditions in general than for discrete

state space. A new interpretation of the solidarity results in terms of branching

Markov processes over X is also offered.

The last two chapters deal respectively with the conditioned process Y , and

the Yaglom limits, in terms of parabolic Martin boundary theory. This is a

new approach to these problems, and explains many of the conditions such as

bounded jumps, compactly supported initial distributions, and the Strong Ratio

Limit Property etc. that previous authors have used. Consider the graph (t,Xt)

of the process X in spacetime. By restricting the state space E if necessary, it

is convenient to think about ζ as the exit time of X from E. Conditioning X

to get Y has the effect of making the graph of Y “exit” the set (0,+∞) × E in

the hyperplane t = +∞. The process (t, Yt) can therefore be viewed as a version

of (t,Xt), Doob-conditioned to exit the Martin boundary on the hyperplane t =

+∞. A rigorous interpretation of this idea, which is developed in the thesis,
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requires an identification of that boundary point (if any) on the hyperplane that is

“chosen” by the conditioning procedure used to define Y . If no suitable boundary

point can be found, the conditioning procedure fails and Y does not exist. For

technical reasons, the “backward graph” (−t,Xt) is used instead of (t,Xt).

In the last chapter, the parabolic Martin boundary techniques are used, once

more, but now to investigate the existence of a Yaglom limit κ. This is achieved

by viewing κ as an entrance law for X, the limit of a suitable sequence of entrance

laws. By switching to a process X̂ in duality with X, the problem is first reduced

to a conditioning problem for (−t, X̂t) very similar to that described in the previ-

ous chapter. Once this is solved, the result is interpreted in terms of the original

process X, and used to get the Yaglom limit itself. In this last step, a tightness

condition is used, and this is related, via a Ray-Knight compactification, to the

concepts of asymptotic remoteness and asymptotic proximity due to Ferrari et al.

(1995) and Pakes (1995) respectively.
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Chapter 1

Introduction

1.1 Quasistationary Tool Box

Markov processes are often used as models in Applied Probability, and the single

most widely used result is the ergodic theorem. As a tool, it allows a simple

asymptotic analysis of the transition probabilities, which are often unavailable

explicitly. Its scope is limited however to recurrent processes.

Transient Markov processes occur in applications just as frequently, and their

transition probabilities exhibit a wide range of qualitative behaviour. Consider

such a process (Xt), evolving on some state space E (see Section 2.1 for the

standard formalism and assumptions, and note especially the definition of 〈µ, f〉

therein). At the most basic level, we have limt→∞ P(Xt ∈ A) = 0 for a class of

subsets A exhausting E. Beyond that, general results are scarce.

If the process leaves the state space a.s. in a finite time, it may nevertheless

appear stationary over a long period of time. This occurs, for example, in epi-

demic models (see N̊asell (1995)). Quasistationary distributions (qsds) have been

used to account for this type of behaviour (the phenomenon itself is known as

quasistationarity). Their role is similar to that of stationary distributions in er-

godic theory. However, there can be many distinct quasistationary distributions

for the process.

Just as finding the stationary distribution of a recurrent Markov process is

1



2 Introduction

only the beginning, rather than the end, of the analysis, so too are there many

questions to be answered in a “quasistationary analysis”, besides the existence

and identification of qsds.

I call the body of results related to such an analysis the “quasistationary

tool box”. Besides procedures for identifying qsds, it also contains theorems

which ensure the convergence of (conditional) transition probabilities. Like their

counterparts in Markovian ergodic theory, these “tools” are used to gain an un-

derstanding of the Markov process which models the physical system.

The theme of the work before you is the quasistationary tool box as it applies

to general Markov processes (continuous time and state space). Such an analysis

has not been done before at this level of generality. Most work on quasistation-

ary distributions (with some significant exceptions) has hitherto been done in the

setting of countable state space Markov chains. Besides its unifying virtue, there

is another, more compelling reason for the approach taken in this thesis; I shall

discuss the main theorems of the quasistationary tool box from the point of view

of spacetime processes and associated Martin boundaries. Even when the original

state space is countable, this requires a more general formalism (spacetime is al-

ways continuous). The parabolic Martin boundary approach to quasistationarity

is entirely new.

The plan of this introduction is as follows: I first discuss the main tool box

components below, then give an extensive outline of the thesis in the next section.

Some open questions and research ideas will appear at the end of each chapter.

In the typical setting in which quasistationarity is investigated, there is an

absorbing state labelled 0 which is eventually entered from any starting position.

Here what we mean is that the absorption time,

T0 = inf{t > 0 : Xt = 0},

is a.s. finite.

In applications, the process Xt might represent the size of a population, in

which case T0 can be interpreted as an extinction time. Thus we assume that ex-

tinction occurs in a finite, but random, time. Other possibilities include chemical
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reactions, when T0 represents the first time one of the reactants is depleted, or

queueing models, with T0 marking the transition from one stable state to another.

For a specific example, take the simple epidemic model of Ridler-Rowe (1967).

In this model, individuals within the population follow a cycle wherein they first

become susceptible to the disease, then infected, and finally recover (or die).

Figure 1 shows a simulation of the sample path of a two-dimensional process

Xt = (X1
t , X

2
t ), where X1

t is the number of susceptibles and X2
t the number of

infected by time t. For this process, the X1-axis is an absorbing set, and it can

be shown that Xt must eventually enter it.

The important feature of this model from our point of view is the long time

till extinction. An observer without the mathematical model before him might

be forgiven for thinking that the process were stationary, on the basis of a very

long (but not long enough!) time spent observing it. Other epidemic models

exhibit the same phenomenon (see for example N̊asell (1995)). How should one

model this quasistationarity quantitatively, given the law of the process X? This

question is what the tool box is designed to address.

The first step towards a description of the phenomenon was taken by Ya-

glom (1947). He considered a branching process Xn in discrete time, with a.s. ex-

tinction. What he showed was the existence of a probability law κ on {1, 2, 3, . . . }

describing the number of individuals in the population at some distant time in

the future, given that extinction hasn’t occurred in the meantime.

lim
n→∞

P(Xn = j |T0 > n) = κj, j = 1, 2, . . . .(1.1)

If the extinction time can be shown to be a.s. very large, Yaglom’s conditioning

represents a valuable addition to the prior information about the process, given

the validity of the model as a whole. In the epidemic example of Figure 1, the

analogue of (1.1) can be computed; an approximate density of κ is shown in

Figure 2. Efficient methods for computing the qsd have been discussed in Pollett

and Stewart (1994).

Clearly, the law κ is only useful as an approximation of the medium to long

term behaviour of Xt provided absorption occurs after a long time. How long
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Figure 1. Simulation of an epidemic process (Ridler-Rowe (1967)) starting at (10, 10).

X1 = Number of susceptibles (X1, X1)→ (X1 + 1, X2) at rate α

X2 = Number of infectives (X1, X2)→ (X1 − 1, X2 + 1) at rate βX1X2

n = Number of transitions (X1, X2)→ (X1, X2 − 1) at rate γX1

is enough could be, for a general process, the source of considerable argument.

The simulation depicted in Figure 1 suggests that the process X naturally tends

towards a statistical equilibrium, and only gets absorbed when a sufficiently large

deviation of the sample path occurs. Chan (1997) has discussed this type of be-

haviour for density-dependent birth-death processes. In the case of contemporary

epidemics models, the typical time till absorption can last (theoretically) for sev-
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Figure 2. A quasistationary distribution.

eral times the age of the universe, and the measure κ offers a useful description

of reality. In this work, I shall bypass this all-important question completely,

concentrating instead on the existence of various limits such as (1.1) for a class

of Markov processes. I shall refer to (1.1) as a Yaglom limit.

There is some debate in the literature on the appropriateness of this termi-

nology. Other names for (1.1) include quasistationary distribution (we shall use

this term for a different concept) and limiting conditional distribution, sometimes

even ν-LCD, where ν is the distribution of X0. This last term is favoured by

Pakes (1995) on the grounds that Yaglom limits should refer only to branching

processes. The terminology I shall use follows Ferrari et al. (1995). As we shall
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see later, there is a close connection between Yaglom limits for general Markov

processes and certain associated branching processes, and this is another reason

why I have chosen this terminology.

The form of (1.1) is vaguely reminiscent of a limit theorem in the ergodic

theory of Markov processes. Indeed, were the process X positive recurrent, with

state space E\{0}, then T0 = ∞ a.s. , and (1.1) would state that the transition

law of X converges to the (unique, stationary) limiting distribution. With this

contrived analogy in mind, one can ask about the existence of a (unique, quasis-

tationary) Yaglom limit, thereby studying a Bayesian form of ergodicity. Here a

law µ is called quasistationary provided the process, started with µ, stays with µ

given that it doesn’t absorb at 0:

Pµ(Xt ∈ A |T0 > t) = µ(A), A ⊆ E.

I shall also use the term “quasistationary distribution” (abbreviated qsd) to refer

to such a probability measure. There can be many quasistationary laws (van

Doorn (1991)), and a Yaglom limit is always quasistationary. However, there can

be many Yaglom limits, depending on the entrance law of X. This is in stark

contrast to the positive recurrent case alluded to earlier.

Another type of limit of interest in studying the quasistationary behaviour of

a Markov process X is the double limit

lim
s→∞

lim
t→∞

P(Xs ∈ A |T0 > t+ s) = π(A),(1.2)

where π represents some probability measure on E and A is some subset of the

state space, typically not containing 0. This is known sometimes as a type II

limiting conditional distribution, whence the Yaglom limit is referred to as type

I (Flashpohler (1974)). There will be little to say about the limit (1.2), much

less about its use in applications. This is mainly due to the fact that (1.2) only

ever appears when the process X is positive Λ∗-recurrent; see Theorem 3.15 of

Chapter 3. Of more interest will be the question of whether we can define a new

Markov process Y , by stipulating that its finite dimensional distributions satisfy

P(Yt1 ∈ A1, . . . , Ytn ∈ An) = lim
r→∞

P(Xt1 ∈ A1, . . . , Xtn ∈ An |T0 > r).(1.3)
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We will call the process Y a conditioned process. It describes the behaviour of

X given that we know that absorption won’t occur for a long time. It appears

in various contexts, and was first considered by Darroch and Seneta (1967) in

the context of quasitationary limit theorems. In relation to (1.2), note that π is

simply the limiting law of the process Y , and this necessitates that Y be positive

recurrent. The validity of (1.3) was conjectured by Pollett (1988).

Ratio limit theorems are a type of limit commonly investigated. Papangelou

(1967) discusses these for Λ∗-recurrent processes (these processes are defined in

Chapter 3, Section 3.2) in discrete time. The ratio of the absorption distributions

from two different starting points,

lim
t→∞

Px(T0 > t)

Py(T0 > t)
=
ϕ(x)

ϕ(y)
,(1.4)

appears naturally when investigating quasistationarity (for the existence and

properties of the function ϕ above, see Chapter 3, Theorem 3.15). We shall

see in Chapter 4 that the limit (1.4) exists as a by-product of the existence of the

process Y satisfying (1.3). Thus there is little need to analyse (1.4) on its own.

If the Yaglom limit from x and y also exists, we get a form of the Strong Ratio

Limit Property (compare with the classical form, Chapter 4, last paragraph of

Section 4.1):

lim
t→∞

Px(f(Xt), ζ > t)

Py(g(Xt), ζ > t)
= lim

t→∞

Px(f(Xt) | ζ > t)Px(ζ > t)

Py(g(Xt) | ζ > t)Py(ζ > t)
=
〈κ, f〉ϕ(x)

〈κ, g〉ϕ(y)
.

I shall refer to the limits in (1.1) - (1.4) generically as quasistationary limits.

Once these have been identified, a fundamental problem remains. How can these

limits be computed? Here, one turns to equations involving the generator of the

process (definition in Section 2.5). Much work has been done in this direction

these last ten years. See, for example, papers by Pollett (1988) and Nair and

Pollett (1993).

In this thesis, I shall always illustrate my results with reference to only two

types of Markov processes. The first is that of diffusions on a subset of Rd

(defined in Example 2.1). The second is that of continuous time Markov chains
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on a countable state space (defined in Example 2.2). The literature related to

quasistationary distributions is much greater in the case of Markov chains than

diffusions. Pollett (1993) has given an overview, highlighting the applications to

biological modelling. Pakes (1995) also has a good review in his introduction.

In contrast, the literature relating to diffusions is much smaller, with Collet et

al. (1995), Jacka and Roberts (1997), Pinsky (1985) being the main papers in

the field so far. This discrepancy is of course due to the wider variety of Markov

chain models (as opposed to diffusions) in use by investigators.

Nevertheless, the relations between diffusions and Markov chains are many,

and I will affirm that a knowledge of quasistationary tool box theorems requires

both cases to be properly understood. For example, the Feller-McKean chain,

whose states are all instantaneous (see Rogers and Williams (1994)), may be

viewed as a Brownian motion on a suitable compactification of the state space.

This is a particular case of the Ray-Knight compactification theory, which turns

the Markov chain jump from any instantaneous state into a continuous motion

on the compactification.

Diffusion approximations of birth-death chains were used in the calculation

of quasistationary distributions already by Seneta (1966); for this example, it is

surprising that the corresponding tool box theorems were only proven much later

(Collet et al. (1995), Jacka and Roberts (1997)).

Finally, potential-theoretic tools are much more accessible for diffusions than

for Markov chains. The former therefore represent an ideal first choice for the

application of potential theory towards the proof of tool box theorems. Here, I

have in mind results in Chapters 4 and 5 of this thesis.

1.2 Outline of the Thesis

In this section, I shall outline in some detail the results contained in the thesis.

My aim at this stage is to present an overview, with room for discussion and

conjecture.
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The model I shall use throughout is that of a (continuous time) Markov process

X, with a.s. finite lifetime ζ, evolving on a metric state space E. This means

that X leaves E for the first and last occasion at the random time ζ. The law of

X when started in state x ∈ E is written Px. There are some advantages of this

formalism.

Since the exact manner of death is not prescribed, the random time ζ may

equal T0, the first hitting time of the state (or more generally, the set) 0. In this

case, all equations and results in the thesis may be reinterpreted, replacing ζ by

T0, and the theory then applies to any Markov process, irrespective of its lifetime.

This is the conventional form of presenting quasistationary limit theorems. For

example, if X is a positive recurrent Markov process, and ζ = T0, then Yaglom

limits can help in understanding the excursions away from 0.

A seemingly quite different class of limit theorems has begun to appear only

recently (Schrijner (1996), Kijima et al. (1997) and Hart (1997)). Let X be a

transient process, and suppose that we denote by L0 the last time that the process

ever visits state 0. The random variable L0 is not a stopping time. Nevertheless,

one can ask if the analogous Yaglom limit

lim
t→∞

Pν(f(Xt) |L0 > t) = 〈κ, f〉(1.5)

exists. For example, X may be a birth death process on Z, with positive drift.

It is known that this process converges to +∞ (in an infinite time). However,

the time L0 is certainly finite, and the existence of the limit (1.5) is not trivial.

Pollett (personal communication), see also Hart (1997), has an example of such

a process, which exhibits a form of quasistationarity. The process lingers for a

very long time around a point near the state zero, and finally drifts off to +∞,

never to return.

It is possible to fit this type of study into the framework considered in this

thesis. Indeed, it was shown by Meyer et al. (1972) that if c(x) = Px(L0 > 0),
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then the process Y constructed by killing X at time L0, namely

Yt =

Xt if L0 > t,

∂ if L0 ≤ t,

where ∂ is some cemetery state added to E, is under the probability measure

Px, when c(x) > 0, a time-homogeneous honest Markov process with state space

{x : c(x) > 0} ∪ {∂}, and semigroup (Qt) related to the semigroup (Pt) of X

by the formula Qt(x, dy) = Pt(x, dy)c(y)/c(x). Here the lifetime of the process

Y can be viewed as the hitting time of the cemetery state ∂, as this state is

absorbing. Thus to study (1.5), one has to formally replace Xt by Yt, and L0 by

ζ = ζY . More generally, one can consider any cooptional time L (Dellacherie and

Meyer (1992)), and killing by way of multiplicative functionals.

Chapter 2 begins with some standard definitions and results about Markov

processes. One aim here is to fix a notation to be used in the rest of the thesis.

Noteworthy is the use of P instead of the usual E to symbolize expectations. This

is designed to make it easier to keep track of the underlying probability measure,

as this will frequently vary. Thus when the measure is Q, not P, the associated

expectation is Q, as opposed to the more awkward EQ used by some authors.

I also describe three examples of processes: diffusions (generated by an elliptic

differential operator), Markov chains (generated by a q-matrix), and spacetime

processes Xr = (t− r,Xr), which correspond to the graph of Xt if the time axis

is inverted. For this last type of process, X is typically either a diffusion or

a Markov chain. X is needed in Chapter 4, and was first studied in depth by

Doob (1955).

I shall then recall the definition of excessive functions (in Section 2.2, Chap-

ter 2) of a Markov process, and outline their use in conditioning processes on the

Martin boundary. This follows classical theory due to Doob (1957), Kunita and

Watanabe (1965) and Meyer (1968). As these ideas are pivotal to Chapter 4,

it pays to recall the theory for reference. Noteworthy here is the concept of a
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harmonic function, that is a function h such that

Px(h(Xσ), ζ > σ) = h(x), x ∈ E,

where σ = inf{t > 0 : Xt /∈ K} and K ranges over all compact subsets of E.

When considering the spacetime process X, a harmonic function (for X) is also

called parabolic (for X).

I finish the chapter with a characterization of harmonic functions in terms of

the local martingale generator A. When X is a diffusion, A = L, whereas if X is

a Markov chain, A is the q-matrix. For the spacetime process X, the generator

is Ā = A− ∂/∂t.

By Theorem 2.9 of Chapter 2, a locally bounded function h is harmonic if

and only if Ah = 0. This is part of the folklore of Markov processes, and can

be found routinely in textbooks for particular processes (see Bass (1995) for

Brownian motion, Rogers and Williams (1987) for Markov chains, and Dynkin

(1965) for Feller-Dynkin processes). Unfortunately, there does not appear to be

a simple direct proof for general Markov processes (particularly the spacetime

processes considered in Chapter 4) in the literature. I have therefore provided

one (Theorem 2.9). By the previous remarks, a parabolic function is a solution

to the Kolmogorov backward equation (∂/∂t)h(t, x) = Ah(t, x).

It should be emphasized that I only ever consider the minimal process X

associated with the generator A. This is quite natural when the lifetime coincides

with the first hitting time of 0.

Chapter 3 begins with a study of decay parameters and the existence of λ-

excessive functions and measures. A λ-excessive function is by definition a func-

tion which is excessive for the semigroup e−λtPt. Here, λ can be either positive or

negative. A similar definition can be given for λ-excessive measures. If a function

h is λ-harmonic for X, then the spacetime function (t, x) 7→ eλth(x) is parabolic,

and conversely.

Functions which are λ-harmonic arise naturally in the study of the conditioned

process defined by (1.3). See for example the first generic study of (1.3) for
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Markov chains, by Jacka and Roberts (1995). The case of λ-invariant measures is

more ancient. It was noted by Vere-Jones (1969) that the probability measure κ

arising in the Yaglom limit (1.1) must be λ-invariant for some λ ≤ 0. Later, it was

shown by Nair and Pollett (1993) that a probability measure µ is a quasistationary

distribution according to (1.1) if and only if it is λ-invariant for some λ.

A quasistationary distribution need not be equal to κ, and there may be many

values of λ associated with qsds. However, the value of λ associated with κ (if

the Yaglom limit exists) is always the smallest value associated with any qsd

(this follows from a study of decay parameters, and results of Pollett (1988)).

Indeed, if we start the process X with initial distribution µ, then its lifetime is

exponential with mean |λ|−1. Thus κ has the smallest absorption time. Just

precisely why this is so is not entirely clear. The reason lies probably somewhere

within Martin boundary theory. I shall come back to this remark later, when I

discuss open problems after Chapter 4.

In the first section of Chapter 3, I shall prove some solidarity results (The-

orem 3.3) for the kernels Vλf(x) = Px

∫ ζ
0
e−λtf(Xt)dt associated with an irre-

ducible Markov process; here λ ≤ 0, otherwise (Vλ) would just be resolvent of X:

there exists a parameter Λ∗ (Kingman’s decay parameter - see Kingman (1963))

and a negligible set N ⊂ E such that Vλ(x, dy) is transient for λ > Λ∗, and

only takes the values +∞ or 0 for λ < Λ∗. This forms the basis for the Λ∗-

recurrence/transience classification of X to be described in Section 2. A proof

of Theorem 2.9 for countable state processes is due to Vere-Jones (1962, discrete

time), Kingman (1963, continuous time); for general state spaces it was shown

by Tweedie (1974a, discrete time). None of these proofs is entirely satisfactory

in continuous time with a general state space. See Chapter 3 for details.

Section 2 of Chapter 3 introduces another decay parameter, denoted Λ1. It is

characterized as the smallest (negative) λ for which P(ζ > t) = o(eλt) as t→∞.

When the Yaglom limit exists, then κ is associated with Λ1. Various characteri-

zations and properties of Λ1 are studied. Perhaps the most interesting fact stated

here is that, in order to have a continuum of qsds (associated with different values
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of λ), it is necessary to have a certain form of “asymptotic remoteness”. This

concept was used by Ferrari et al. (1995) to prove the existence of quasistationary

distributions; it was first observed by Pakes (1995) that qsds also exist without

this condition. Section 1 of Chapter 5 discusses these problems further.

Section 3 summarizes known results about positive Λ∗-recurrence. Processes

which are of this type include Markov chains on a finite state space and uniformly

elliptic diffusions on bounded open sets. The theorems here are mainly due to

Darroch and Seneta (1967), and Tweedie (1974a), Tuominen and Tweedie (1979).

Most useful for testing Λ∗-recurrence is Tweedie’s Test (Proposition 3.11), which

we “dualize” in Proposition 3.12. Theorem 3.15 states that the existence of all

the limits (1.1)-(1.4) is equivalent to a strong form of positive Λ∗-recurrence,

namely a simultaneous skeleton irreducibility together with a finite Λ∗-invariant

measure. The simultaneous skeleton irreducibility does hold for Markov chains

and diffusions, but we show by a counterexample that this need not be so for

every Markov process. In particular, the counterexample fails the conditions of

Theorem 3.15, even though it is positive Λ∗-recurrent and satisfies a natural (but

weak) form of irreducibility.

In Theorem 3.15, the existence of the type II limit (1.2) is crucial. Indeed,

there are many examples of processes X for which the limits (1.1), (1.3) and (1.4)

exist, but X is not even Λ∗-recurrent. Consequently, (1.2) does not exist (it is

identically zero).

Sections 4 and 5 of Chapter 3 are an attempt to interpret probabilistically the

preceding material. Given X and γ, a branching Markov process B is constructed

as follows: place n particles in E, each evolving independently according to the

law of X (in particular, each has its own lifetime). At the jump times of an

independent Poisson process with rate γ, choose a surviving particle at random

and replace it with two independent particles placed at the same location. If γ

is large enough, the expected number of particles alive in any one set will grow

without bound; if γ is too small, the particles die faster than they can reproduce.

The critical value is γ = −Λ∗ (Theorem 3.18). A quasistationary distribution
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µ has an equally simple interpretation. If we let Zt(A) denote the number of

particles alive within the set A at time t, then the measure µ is an equilibrium

distribution for the measure valued process Z.

An extensive study of the process Z can be found in Asmussen and Hering

(1983). Note however that they assume that X is positive Λ∗-recurrent, and even

a little more. When B is supercritical, they showed that

lim
t→∞

Zt(A)

Zt(B)
a.s.
=

κ(A)

κ(B)
on {Zt(B) > 0 ∀t},

where κ is the unique quasistationary distribution and Yaglom limit. It is also

true that limt→∞Qx[Zt(A)]/Qx[Zt(B)] = κ(A)/κ(B), where Qx is the law of B

started with one particle at x ∈ E, regardless of the value of the branching rate.

The Yaglom limit (1.1) can be viewed as a special case of this, occurring when

the branching rate is zero. Kesten (1978) studied the process B in the case that

X is a Brownian motion on (0,+∞) with constant negative drift; this process X

is Λ∗-transient.

I shall now outline Chapter 4. The main problem considered here is whether

or not (1.3) may be used to define a Markov process Y . If the finite dimensional

distributions (1.3) do indeed converge, then we will say that the (process level)

conditioning problem has a solution. Ideally, Y will be a time homogeneous

Markov process; this is the case for finite state space Markov chains (Darroch

and Seneta (1967)), birth death processes (Jacka and Roberts (1995), Jacka et

al. (1997) and Schrijner and van Doorn (1997)), one dimensional diffusions (Collet

et al. (1995), McKean (1963) and Jacka and Roberts (1997)), for example. At the

other extreme, the conditioning problem does not have a solution; an example

was found by Jacka and Roberts (1995), and I shall have more to say about this

at the end of Chapter 4.

To understand the appearance of spacetime Martin boundaries (for definitions,

see Sections 2.4 and 4.1), we need to re-express the right side of (1.3) using the
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Markov property:

Px

[
Xt1 ∈ A1, . . . , Xtn ∈ An

∣∣ζ > r
]

= Px
[
Xt1 ∈ A1, . . . , Xtn ∈ An, h−r(tn, Xtn)

]
,

where h−r(t, y) = Py(ζ > r − t)/Px(ζ > r).

Doob (1955) was the first to show that (t, y) 7→ Py(ζ > t) is parabolic. Indeed,

it is easy to see that this function is in fact invariant for Xu = (t0−u,Xu) on the

set (0,+∞)×E (see Chapter 2). Consequently, the function h−r(t, y) is parabolic

on (−r, 0)× E, and moreover it is always normalized so that h−r(0, x) = 1.

A fundamental result in Martin boundary theory (see Chapter 2) now asserts

the existence of a probability measure µ−r representing the function h−r on the

boundary. By Lemma 4.5, this measure must not charge that part of the boundary

“over” (−r, 0)× E.

We can now study the weak limit points of the family (µ−r) on the Martin

compactification. Clearly, if µ−rn ⇒ µ, then µ only charges that part of the

boundary directly “over” {−∞}×E. Corresponding to µ is a function h(t, y) =

limn→∞ h−rn(t, y) (Lemma 4.6); and this will be independent of the sequence

rn → +∞ if and only if µ is. Once the uniqueness of µ is established, the parabolic

Harnack inequality is then used to prove the existence of a law Q solving (1.3),

and consequently the existence of a Markov process Y (see Theorem 4.21, and

compare with Jacka and Roberts (1995)).

Up to this point, the assumptions needed will be minimal: Assumption II

(which includes a form of irreducibility) and the parabolic Harnack inequality.

These assumptions certainly hold for diffusions and Markov chains (I give a proof

of the parabolic Harnack inequality in the case of chains - I could not find one in

the literature). It then remains only to prove that µ−r ⇒ µ, or equivalently that

the family (h−r) has a unique limit point.

For this, two independent assumptions are needed: Assumption III (which

requires the jumps of X to be bounded) guarantees the existence of a nonzero

parabolic function with representing measure supported “over” {−∞} × E. As-

sumption IV is used to prove uniqueness, through the concept of a cemetery
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neighbourhood. This is a subset N of E with the property that the sample path

Xt spends the last segment of its life there. According to Lemma 4.14, any limit

measure µ must be supported by the “projection” of N on {−∞} × E. The

expectation is that smallness of N translates into few parabolic limit functions

h = limn→∞ h−rn (see Proposition 4.24 and Theorem 4.27). A range of examples is

given to show that one can often deduce that there can be only one such function

h > 0. It is worth pointing out here what goes wrong with the counterexample

of Jacka and Roberts (1995) alluded to earlier. The cemetery neighbourhood

consists of a single state, so by Theorem 4.27 there is at most one nonzero limit

function h. The problem is that the process does not have bounded jumps, and

there does not exist a suitable limiting parabolic function h. See the last example

of Chapter 4 for details.

Chapter 5 builds in an essential way on the techniques of Chapter 4. We study

the convergence, as r →∞, of the measures 〈νr, f〉 = Pν(f(Xr) | ζ > r).

In Section 1, we obtain probabilistic conditions for the tightness of the family

(νt). This is done in terms of an extended process X ′ which exists on a com-

pactification of the original state space E. When restricted to E, this process

coincides with X. Terms such as asymptotic remoteness and asymptotic proxim-

ity are defined using X ′. These concepts were introduced by Ferrari et al. (1995)

and Pakes (1995) respectively, but the interpretation using X ′ is new, and unifies

them.

In Section 2, we return to the parabolic Martin boundary, and begin a study,

not of (νt) itself, but of the associated entrance laws ηrt = νrPt. Using a slight

modification of Assumption II (which we call Assumption II(bis)), we define a

dual process X̂, whose semigroup satisfies P̂t(x, dy) = pt(y, x)m(dy) if Pt(x, dy) =

pt(x, y)m(dy) is the semigroup of X. The entrance laws ηrt have a density k̂r(t, y)

with respect to the measure m, and this density is parabolic for X̂.

It is shown in the remainder of the chapter that the existence of the Yaglom

limit is equivalent to the convergence, as r →∞, of the parabolic functions (k̂r).

This is entirely analogous to the situation in Chapter 3, where the existence of
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the conditioned process Y is shown to be equivalent to the convergence of the

functions hs as s → −∞. Once again, every limiting function k̂(t, y) will be

representable on the hyperplane {−∞} × E of the parabolic Martin boundary

associated with X̂ (Proposition 5.11); the uniqueness of the limit uses the same

techniques as in Chapter 4, namely parabolic Harnack estimates and cemetery

neighbourhoods. Finally, the existence of a nonzero limit function k̂ is shown by

the tightness criterion of Section 1.
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Chapter 2

Markov Processes and Martin

Boundaries

This chapter introduces the notation and terminology used in the rest of this work.

It introduces the formalism of Markov processes, and describes basic results of

Martin boundary theory. Standard references for the claims below are Rogers

and Williams (1987, 1994), Dellacherie and Meyer (1988, 1992), Chung (1982),

Revuz and Yor (1991), and Sharpe (1988). See also Ancona (1990) for spacetime

processes. The last section deals with local martingale generators, and uses these

to characterize harmonic functions. Many different types of generators are used

in Markov process theory, and while the characterization we give is familiar, it

cannot be found in standard references.

2.1 Markov Processes

Let E be a locally compact metric space. The σ-algebra of Borel sets is denoted

E . A process X with state space E is simply a collection of random variables

(Xt : t ≥ 0) with values in E. More formally, one defines a measurable space

(Ω,F) and requires Xt : Ω → E to be an E/F measurable mapping for each

t ∈ R+ = {t ≥ 0}. Probability measures do not enter the framework yet.

Among suitable event spaces (Ω,F), we single out a particular one, the space

19
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of (càdlàg) paths in E, which is defined as follows: Let Ω denote the set of curves

(with lifetime) ω : [0, ζ(ω))→ E which are right continuous and left limited in E,

for all t ∈ [0, ζ(ω)). Here, ζ(ω) is called the lifetime of the path ω. It is important

that the left limit at the lifetime

Xζ−(ω) = lim
t↑ζ(ω)

ω(t),

may not exist in the topology of E. There is more about this below. We emphasize

that this means the left limit limt→ζ− ω(t) may not exist (in the topology of E).

We define the coordinate process by Xt(ω) = ω(t), and this will be a stochastic

process on E provided we set F = σ(Xt, ζ > t : t ≥ 0), that is, F is the

σ-algebra generated by all sets of the form {Xt ∈ A, ζ > t}, where A ⊆ E .

Under this definition, the lifetime ζ is automatically a random variable on (Ω,F),

with values in [0,+∞]. The natural filtration of X is the collection (F0
t ), where

F0
t = σ(Xs, ζ > s : 0 ≤ s ≤ t), that is, F0

t is the history of the process X up to

and including time t.

Before going on, we need to describe some measure theoretic notation used

throughout the rest of this work. Let µ be a measure, and f a function. Unless

otherwise specified, we shall always assume that a function is measurable with

respect to the structure defined on its domain. The integral of f with respect to

µ is written variously as∫
fdµ =

∫
f(x)µ(dx) = 〈µ, f〉 = µ(f).

If P (x, dy) is a kernel, we shall write Pf(x) =
∫
P (x, dy)f(y) = P (x, f) when

it acts on functions, and µP (dy) =
∫
µ(dx)P (x, dy) when it acts on measures.

Recall that the composition of positive kernels is associative.

Suppose now that (Pt : t ≥ 0) is a semigroup of positive, sub–Markovian

kernels on E, that is Pt+s = PtPs and Pt(·, E) ≤ P0(·, E) = 1 for all t, s ≥ 0. We

shall always assume that Pt maps Borel functions into Borel functions. If P is a

measure on (Ω,F), we say that a process X (defined on Ω) is Markovian under

P with semigroup (Pt) if, whenever f is a positive Borel function,

P(f(Xt), ζ > t|F0
s ) = Pt−s(Xs, f) on {ζ > s}.(2.1)
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Note our convention: we use P (not E) to denote expectation. We shall be

considering the same coordinate process under many different measures P, Q, . . . ,

and this notation makes it easier to keep track. The equality in (2.1) holds of

course only a.s. P, but we will usually not mention this further.

If, under P, X0 has law µ, we indicate this by writing Pµ instead of P. In

particular, Px is to be associated with µ = εx, the point mass at x ∈ E.

The resolvent of X is the family (Vp : p ≥ 0) of kernels given by

Vp(x, f) =

∫ ∞
0

e−ptPt(x, f)dt = Px

∫ ζ

0

e−ptf(Xt)dt.(2.2)

Note the appearance of the lifetime ζ (let s = 0 in (2.1) to get the right hand side

of (2.2)). Once ζ has occurred, the process does not belong to E anymore. When

p = 0, we often simply write V (x, dy) = V0(x, dy), and call this the potential

kernel of X. The process (in fact, any kernel V ) is called transient if and only if

there exists a function g > 0 such that 0 < V (·, g) < +∞ on E. This does not

necessarily imply that the lifetime ζ is finite, but it does mean that (Xt) spends

a.s. a finite time in each subset B of E such that V (·, B) < +∞.

Recall that a stopping time relative to some arbitrary filtration (Gt) ⊃ (Ft0)

is a random variable T such that {T ≤ t} ∈ Gt for each t ≥ 0. Examples are

given by hitting times of Borel sets B ⊂ E:

TB = inf{t > 0 : Xt ∈ B},

but only if the filtration (Gt) contains all P-null sets (see Rogers and Williams

(1994)). To take care of all possible initial distributions, we write (Ft) to mean

the smallest, right continuous filtration containing (F0
t ) and such that F0 contains

all Pµ-null sets, as µ varies over the possible initial distributions. Later, we will

be mostly interested in the first exit time from a set B, σB = TBc .

The process X is called Strong Markov under P if

P(f(XT+t), ζ > T + t | FT ) = Pt(XT , f) a.s. on {T <∞}(2.3)

holds for all (Ft)-stopping times.
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We shall sometimes make use of the shift operator θt which is defined on path

space Ω by the formula (θtω)(s) = ω(t + s). In terms of it, the Strong Markov

property becomes

P(H ◦ θT | FT ) = PXT (H) a.s. on {T <∞},

for any positive random variable H (which can be F∞ measurable). A useful fact

in this connection is that hitting times of Borel sets are terminal times, as is ζ.

This means that ζ = ζ ◦ θt + t on {ζ > t}. Applying the Markov property gives

the following calculation, which is of fundamental importance for Chapter 4, and

illustrates the use of the shift operator:

Pν(g(Xt), ζ > t+ s) = Pν(g(Xt), ζ ◦ θt > s, ζ > t)

= Pν(g(Xt)Pν(ζ ◦ θt > s | Ft), ζ > t)

= Pν(g(Xt)PXt(ζ > s), ζ > t).

We now give some examples of the Strong Markov processes we have in mind,

fixing various elements of notation.

Example 2.1. Let E be a subdomain of Rd. Thus E is open, and its

boundary is denoted ∂E. We shall be interested in a diffusion (Xt) whose lifetime

coincides with the first exit time from E. Thus Xζ− does not belong to E. The

process is specified uniquely as the minimal process whose generator is given on

C∞K (E), the space of C∞ functions with compact support strictly contained in E,

by

Lf(x) =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x) +

d∑
j=1

bj(x)
∂

∂xj
f(x), f ∈ C∞K (E),

with Hölder continuous coefficients. We say that the diffusion X is uniformly

elliptic if there exists a constant λ such that

λ−1 ‖θ‖2 ≤ 〈θ, a(x)θ〉 ≤ λ ‖θ‖2 , θ ∈ Rd,

and ‖b(x)‖ ≤ λ. Thus the eigenvalues of the positive definite, symmetric matrix

aij(x) are bounded above and below (by λ and λ−1 respectively), uniformly on E.
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Example 2.2. Let E be locally compact. A Strong Markov process X whose

sample paths consist exclusively of right continuous step functions will be called

a Markov chain on E. It is specified by a function q(x) which describes how long

the process waits in any given state,

Px(σx > t) = e−q(x)t, σx = inf{t > 0 : Xt 6= x},

and a distribution for the location after the next jump:

Px(Xσx ∈ dy) = π(x, dy).

When the state space E is countable, this information is encapsulated in the

q-matrix of the process,

qij =

−q(i) if i = j,

q(i)π(i, {j}) if i 6= j.

For this process, the left limit Xζ− may or may not belong to E.

Example 2.3. If E is a state space with a Strong Markov process X defined

on it, let E = (a, b) × E, where −∞ ≤ a < b ≤ ∞. We define a semigroup (P̄r)

of kernels on E by the formula

P̄r
(
(t, x); (ds, dy)

)
= 1(a,b)(s)εt−r(ds)Pr(x, dy),

where εt(ds) is the point mass at t ∈ R. The associated Strong Markov process on

E is Xr = (Lr, Xr), where Lr is the process of translation at unit speed towards

zero, killed once it hits the point a. The semigroup of Lr is just Qr(t, ds) =

1(a,b)(s)εt−r(ds). The process X dies once either Xr /∈ E or Lr = a, whichever

comes first. Spacetime quantities will always be denoted by a bar, as in x = (t, x),

ζ̄(ω) = inf{s > 0 : Ls(ω) = a} ∧ ζ(ω).

It is obvious that P(t,x)(z ≤ t − a) = 1, and the process X is always transient,

although z can be infinite if a = −∞ (in which case the process “runs off to
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−∞”, although it will exit E before the end of the run if ζ <∞.). The resolvent

is given by

V̄pf(x) = P(t,x)

∫ z

0

e−psf(Xs)ds =

∫ t

a

e−p(t−s)ds

∫
E

Pt−s(x, dy)f(s, y).(2.4)

Sharpe (1988) can be consulted for a careful construction of X. In particular, X

can always be constructed on the same probability space Ω as X. We will always

state clearly what the interval (a, b) is in any given situation.

2.2 Excessive Functions and h-Transforms

We fix a transient Strong Markov process X as in the previous section, and work

with its canonical realization on path space. Many of the quantities we will deal

with are constructed out of excessive functions, thus we collect here the relevant

results about them. Much of this is culled from Dellacherie and Meyer (1987),

but it may also be found in Chung (1982) among many others.

A Borel function h : E → [0,+∞] is called excessive if it satisfies

Pth ≤ h, lim
t→0

Pth = h on E.

Equivalently, this may also be stated in terms of the resolvent (Vp) by the re-

quirement that pVph ↑ h as p→∞.

A prime example of an excessive function is the function h = V (·, g), where

g is some arbitrary positive Borel function. Excessive functions of this form

are sometimes known as potentials. One can ask if all excessive functions are

of this form, and the answer is no. However, for any excessive h, we can set

gn = n(h− P1/nh), and then

h =↑ lim
n→∞

V (·, gn).

This result requires transience of X.

When h is excessive, the process h(Xt)1(ζ>t) is a positive supermartingale

under any probability law Pν where 〈ν, h〉 < +∞, though if h is not ν-integrable,
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the process can have infinite expectation. If we do not have limt→0 Ptf = f , then

the process is not right continuous.

One of the many uses of excessive functions is in testing for inaccessible sets.

More precisely, if h is excessive, then B = {x : f(x) = +∞} is a polar set, which

means Px(TB = +∞) = 1 for all x ∈ Bc. This fact is used in Chapter 3.

Various useful classifications of excessive functions exist. In this work, we are

mainly interested in

Invariant functions: An excessive h is called invariant if

Pth(x) = h(x), x ∈ E.

Harmonic functions: An excessive h is called harmonic if

Px(h(XσK ), ζ > σK) = h(x), for all compact K ⊂ E.

As always, σK = inf{t > 0 : Xt /∈ K} is the first exit time from K.

As we shall see, the distinction is mainly that h(Xt)1(ζ>t) is a local martingale

when h is harmonic, but a true martingale only if h is invariant. The analogous

definition for the backward spacetime process X merits its own terminology:

Parabolic functions: A function h(t, x) is called parabolic in (a, b)× E if it is

harmonic for the process X, killed upon exit from (a, b)× E.

An important example of a parabolic function in (0,∞) × E is given by the

function

uf (t, x) = Px(f(Xt), ζ > t), f ≥ 0.

This function is in fact invariant for X (hence harmonic) since by the simple

Markov property

P̄ruf (t, x) = Px(PXr(f(Xt), ζ > t− r), ζ > r) = Px(f(Xt), ζ > t).

As pointed out by Doob (1957), the function uf solves the Cauchy problem

∂u/∂t = Au, t > 0, u(0, x) = f(x).
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Here A is a suitable generator. See the end of this chapter.

We now introduce the setup of h-transforms, another concept originally due

to Doob (1957). For the remainder of this section, h is a fixed excessive function.

We put

Eh = {x ∈ E : 0 < h(x) <∞},

which defines a Borel set in E. Associated with Eh is a semigroup (P h
t ), defined

on Eh as follows:

P h
t (x, f) = h−1(x)Pt(x, fh), x ∈ Eh.

Related quantities will be denoted by a superscript h in the obvious way. It

is important that the process with semigroup (P h
t ) can be realized as a Strong

Markov process on the same space Ω we started with. In fact, its path measure

P
h
x is related to that of the original process by the formula

h(x)Phx(Λ; ζ > T ) = Px(Λ;h(XT )), x ∈ Eh,

where T denotes a finite stopping time and Λ ∈ FT . In particular, we can deduce

from the above that

P
h
x(Xt ∈ Eh and Xt− ∈ Eh for all t < ζ) = 1,

so that we do not need to worry about how (P h
t ) is defined on E\Eh (Meyer

(1968)). Note that it is certainly possible that Xζ− /∈ Eh.

2.3 Integral Representations

In this section, we recall the Choquet integral representation theorem for convex

sets, and the consequent integral representation of excessive functions. The for-

mer will be used for various proofs in Chapter 4, while the latter is used in the

proofs of Chapter 3.

Let C be a convex, metrizable, compact subset of a locally convex topological

vector space. An extreme point of C is any point x ∈ C which is not the midpoint
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of any line segment entirely contained in C. We denote the set of extreme points

of C by ∂eC. According to Choquet, every point of C is a weighted sum of

extreme points:

Choquet’s integral representation theorem: states that, for each x ∈ C,

there exists a probability measure µx concentrated on ∂eC such that

λ(x) =

∫
∂eC

λ(z)µx(dz)(2.5)

holds for every continuous linear map λ : C → R, and conversely (see

Dellacherie and Meyer (1983)).

Now let r be a probability measure on the state space E of a transient Strong

Markov process, and set

Cr = {h : h is excessive and 〈r, h〉 = 1}.

This set is convex, and its extreme points are minimal excessive functions.

Minimal excessive function: An excessive function h is minimal if, whenever

h = k + l where k and l are excessive, they are both proportional to h.

Suppose now that hypothesis (L) below holds:

Hypothesis (L): There exists a measure m on E such that the resolvent of X

is absolutely continuous:

Vp(x, dy) = vp(x, y)m(dy), p ≥ 0.

For the spacetime process X, due to the explicit formula (2.4) for the resolvent,

a sufficient condition for hypothesis (L) to hold is that the semigroup of X can

be written Pt(x, dy) = pt(x, y)η(dy). Then m(ds, dy) = ds · η(dy).

We return to the general situation. When the set Cr is given the L1
loc(dm)

topology, in which hn → h if and only if
∫
K
hndm →

∫
K
hdm for all compact

subsets K of E, it becomes compact and metrizable.
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By concentrating attention on functionals of the type λ(h) = pVp(x, h) and

using the fact that pVph ↑ h as p → ∞ for all h ∈ Cr, it is possible (see

Walsh (1976), p.148) to deduce Choquet’s integral representation theorem for

excessive functions: every function h ∈ Cr can be written

h(x) =

∫
∂eCr

k(x)νh(dk), x ∈ E,(2.6)

for some probability measure νh concentrated on the minimal excessive functions

(extreme points of Cr). This representation also has the added property that,

whenever h is harmonic, the measure νh is actually concentrated on harmonic

minimal functions. It is not true that invariance of h implies that νh is con-

centrated on invariant minimal functions. See Dellacherie and Meyer (1987),

Meyer (1968) and Walsh (1976).

2.4 Martin Boundary

The integral representation of the previous section has a probabilistic counterpart,

which we now describe. Hypothesis (L) is not necessary (see Jeulin (1978)), but

we do assume it below, for simplicity.

Let v(x, y) be the density of V0(x, dy) with respect to m(dy), and let r be

a probability measure on E such that
∫
r(dx)v(x, y) is finite and nonzero. The

Martin kernel is defined by

K(x, y) =
v(x, y)∫

r(dx)v(x, y)
.

There exists a compact set F containing E, known as the minimal Martin

compactification of E, with the following property. For fixed x, K(x, ·) can be

uniquely extended to a continuous function on F , with values in [0,+∞], and

such that K(·, y) is minimal excessive for each y ∈ F . This requires a change in

the topology of E; the new topology is known as the Martin topology, and under

it, the set E is dense in F . From the point of view of the study of the set Cr

of the previous section, the meaning of these facts is that the set ∂eCr can be
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identified with some subset of F . Thus a measure on ∂eCr can be viewed as a

measure on F , and conversely. This is crucial for the next few statements.

The probabilistic interpretation of the Choquet integral representation of the

previous section now states that, for an excessive function h ∈ Cr,

P
h
x(Xζ− exists) = 1, x ∈ Eh if and only if h =

∫
K(·, y)νh(dy),(2.7)

for some probability measure νh which is concentrated on E if Xζ− exists in the

original topology, and concentrated on F if Xζ− exists in the Martin topology.

This probability measure νh is, up to a constant factor, the same as the measure

νh of the previous section. Moreover, we have explicitly

h(x)Phx(Xζ− ∈ A exists) =

∫
A

K(x, y)νh(dy), x ∈ Eh, A ⊆ F.(2.8)

If Phx(ζ =∞) = 1, as is the case for example if h is invariant, the representation

(2.7) and (2.8) still holds if we replace the process X by a speeded up version X̃.

The function h then becomes excessive (but not invariant) for X̃, and such that

Xζ− exists in F .

The preceding claims can be found with proofs in Rogers and Williams (1994),

Meyer (1968) and Kunita and Watanabe (1965).

2.5 Local Martingale Generator

In this section, we take up a quick study of invariance versus harmonicity of

excessive functions, in terms of a generator for the process X. It is part of

the folklore of Markov process theory that a function h satisfying an equation

Ah = 0, where A is a (suitable) generator, is harmonic. Stronger conditions

are needed to prove invariance. This observation is the basis of Doob’s work

on Laplace’s equation and the heat equation (1957, 1955) and is made rigorous

for the restricted class of Feller-Dynkin processes in Dynkin (1965), where A is

Dynkin’s characteristic operator.

A corresponding characterization for more general Markov processes seems

hard to find in the literature, although the result is known for many specific
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classes of processes. Thus for example with Markov chains, which are rarely

Feller-Dynkin, the role of A is taken by the q-matrix. We give now a formal

characterization which is valid for any Strong Markov (right, Borel) process.

Definition 2.4. A locally bounded Borel function f is said to belong to the do-

main of the local martingale generator A if there exists a Borel function g(x) =

Af(x) such that the process

M f
t = f(Xt)1(ζ>t) − f(X0)−

∫ t∧ζ

0

Af(Xs)ds

is, for each (Ω, (Ft),Px), a right continuous local martingale up to ζ in the fol-

lowing sense: there exists a sequence of stopping times Tn ↑ ζ such that M f
t∧Tn is

a Px martingale for each x ∈ E.

In this work, A is the only type of generator we deal with, so we will usually call

it simply the generator of X. It is an extension of the Hille-Yosida infinitesimal

generator of (Pt), viewed as an operator semigroup acting on a suitable space of

bounded functions. The “operator” A is generally multivalued, since the function

g = Af can be arbitrary on sets which are visited by the process for a time set

of zero Lebesgue measure.

Before proceeding, we give a few examples of well known generators.

Example 2.5. Suppose that X is the minimal diffusion on a domain E ⊂ Rd

associated with an elliptic differential operator L. If f is a C2 function with

compact support strictly contained in E, it is a consequence of Ito’s formula that

the process

M f
t = f(Xt)1(ζ>t) − f(X0)−

∫ t∧ζ

0

Lf(Xs)ds

is a continuous martingale under each Px. Now let Kn ⊂ E be compact such that

Kn ↑ E, and set Tn = σKn . We have Tn ↑ ζ, and M f
t∧Tn is a martingale for any

C2 function f on E, again by Ito’s formula. Thus Af = Lf for all f ∈ C2(E).

Example 2.6. Let X be a Markov chain on E = {1, 2, 3, . . . } with stable

q-matrix (qij), that is qii > −∞. The generator A coincides with the q-matrix
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(see Rogers and Williams (1987)):

Af(i) =
∞∑
i=1

qijf(j), i ∈ E,

and its domain includes all functions f : E → R such that Af is finite. The

sequence Tn ↑ ζ can be taken as Tn = σ(Kn), where the Kn are finite sets such

that Kn ↑ E.

Example 2.7. The generator of the spacetime process Xr = (Lr, Xr) is given

by

Āf(t, x) = Af(t, x)− ∂

∂t
f(t, x).

Its domain includes all functions f such that f(·, x) is differentiable and f(t, ·)

belongs to the domain of A.

To characterize harmonic functions as the solutions to Ah = 0, we use the

following technical lemma. In plain language, it signifies that the process cannot

leave the state space by a jump when the lifetime is predictable.

Lemma 2.8. Let Tn ↑ ζ be a sequence of stopping times. If ζ < ∞, then for

every x ∈ E and compact set K ⊂ E,

Px(σK = ζ > Tn ∀n) = 0.

Proof. If ζ(ω) > Tn(ω) for each n, then Xζ−(ω) /∈ E; this is seen as follows. The

stopping time defined by

R(ω) =

ζ(ω) on {ζ > Tn ∀n},

∞ otherwise,

is predictable. If XR− belonged to E on {R < ∞}, we would have (see Rogers

and Williams (1994))

1 = (P01E)(XR−)1(R<∞) = Px(1E(XR), R <∞|FR−),

which is absurd, the right side being zero since XR /∈ E on {R < ∞}. We now

finish the proof by noting that, on {σK = ζ > Tn ∀n}, we would have

1 = 1K(XσK−) ≤ 1E(Xζ−) = 0,

and this is a contradiction.
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Theorem 2.9. A function h ≥ 0 is harmonic if and only if it satisfies

Ah = 0 in E.

Proof. If h is harmonic, it is excessive and the process h(Xt)1(ζ>t) is a right

continuous supermartingale. Because the function is harmonic, we also have by

optional stopping

h(x) = Px(h(Xσ), ζ > σ) ≤ Px(h(Xt∧σ), ζ > t ∧ σ) ≤ h(x),

whenever σ is the first exit time of a compact set. The process h(Xt∧σ)1(ζ>t∧σ)

is thus a martingale. Taking a sequence of compact sets Kn increasing to E, we

find that Mh
t∧σn is a martingale with Ah = 0 and σn = σ(Kn) ↑ ζ. Conversely,

suppose that Ah = 0 in E, and let Tn be a localizing sequence. Take a compact

set K and put σ = σ(K). By the martingale stopping theorem,

h(x) = Px(h(Xσ∧Tn), ζ > σ ∧ Tn)

= Px(h(Xσ), ζ > σ, σ ≤ Tn) + Px(h(XTn), ζ > Tn, σ > Tn).

On {σ > Tn}, the random variable h(XTn) is bounded, so

lim n→∞Px(h(XTn), ζ > Tn, σ > Tn) ≤ lim n→∞ ‖h‖K · Px(ζ > Tn, σ > Tn)

= ‖h‖K Px(σK = ζ > Tn ∀n),

which equals zero by the technical lemma above. Now it suffices to apply the

monotone convergence theorem (since h is positive) to get

h(x) = Px(h(Xσ), ζ > σ).

It remains to check that h is excessive. By Fatou’s lemma and the assumed right

continuity,

lim t→0Pth(x) = lim t→0Px(h(Xt), ζ > t) ≥ Px(h(X0), ζ > 0) = h(x),

and since h(Xt)1(ζ>t) is a positive local martingale, it is also a supermartingale,

which means Pth ≤ h.
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It is worth pointing out explicitly that

Corollary 2.10. A function h is parabolic for X in (a, b)× E if and only if

∂

∂t
h(t, x) = Ah(t, x) in (a, b)× E.

As already pointed out by Doob (1955), if u(x) satisfies an equation Au(x) =

λu(x), λ ∈ R, the function v(t, x) = eλtu(x) is parabolic. Thus there is no need

to develop a sophisticated theory of eigenfunctions of A; rather, their properties

can be deduced from the behaviour of the backward spacetime process X.
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Chapter 3

Solidarity Results and

Λ∗-Recurrence

This chapter is about the ‘λ-classification’ theory of an irreducible Markov pro-

cess. The body of results described here has a long history. In the first section, we

extend to general state space some basic solidarity results for the resolvent. The

first results of this type appeared in Vere-Jones (1962) and Kingman (1963), who

dealt with Markov chains on countable state spaces. Tweedie (1974a) proved the

general state space version for discrete time, and used this as a basis for the contin-

uous time extension (Tuominen and Tweedie (1979)). This required simultaneous

irreducibility of skeleton chains (defined in Section 3). The proof given here does

not rely on discrete time results, and dispenses entirely with simultaneous irre-

ducibility. Next comes a study, in a very general setting, of decay parameters,

λ-excessive functions and measures. A counterexample is given in Section 3, to

show that positive Λ∗-recurrence with bounded Λ∗-invariant functions and mea-

sures is not sufficient for the existence of a Yaglom limit. This contradicts a well

known countable state space result, stated as Theorem 3.15 below. The last two

sections deal with a branching Markov process B constructed over X, in terms

of which the solidarity results are interpreted.

35
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3.1 Solidarity Results

The purpose of this section is to describe some qualitative features of certain

kernels (Vλ : λ ≤ 0) defined below. The success of this undertaking will depend

on good irreducibility assumptions, so we provide a suitable definition below.

Assumption I: There exists a nontrivial σ-finite (irreducibility) measure ν such

that

ν(A) > 0 implies Px

∫ ∞
0

1A(Xs)ds > 0 for all x ∈ E.

In other words, we assume that X is ν-irreducible. This concept goes back at

least to Orey (1971). See the references therein.

There are other, stronger forms of irreducibility for Markov processes, and we

shall use one such in the next chapter, but for the present, the above assumption

is all we require.

Irreducibility measures are certainly not unique, nor are they equivalent. Some

charge more sets than others. However, there always exists a maximal irreducibil-

ity measure η, characterized by the properties that

(i) η is an irreducibility measure, and

(ii) η � ν for every irreducibility measure ν.

In particular, property (ii) implies that η is unique only up to measure equiva-

lence. For a proof of this assertion, see the discussion in Tweedie (1974a) or Num-

melin (1985), who work in discrete time. The continuous time result is proved by

switching to the resolvent chain with one-step probabilities P (x, dy) = V1(x, dy).

Our goal in the present section is to establish solidarity results for the “oper-

ators” Vλ defined by the formula

Vλf(x) = Px

∫ ζ

0

e−λtf(Xt)dt, x ∈ E, λ ∈ R.(3.1)

This is used later in Section 3 to study some basic properties of the set of

λ-excessive functions and measures. Note that if λ ≥ 0, (Vλ) is just the resolvent

of the process.
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We are interested in whether the quantity in (3.1) is finite or infinite, simulta-

neously for all x ∈ E and positive functions f . Clearly, this will be the case only

if the behaviour of the process when started in x can be linked to its behaviour

when started somewhere else, which is why we need Assumption I.

Besides being useful for proving Theorem 3.3, the following technical lemma

shows that (Vλ : λ ≤ 0) is, as one would expect, an extension of the resolvent

(Vp : p ≥ 0).

Lemma 3.1. For every λ ∈ R, the formula (3.1) defines a kernel Vλ(x, dy), that

is, a function Vλ : E × E → [0,∞] such that

1. for each x ∈ E, Vλ(x, ·) is a (not necessarily σ-finite) measure,

2. for each A ∈ E, Vλ(·, A) is a E measurable function with values in [0,∞].

Moreover, the extended resolvent equation holds:

Vλf = Vµf + (µ− λ)VλVµf, V µV λf = VλVµf,(3.2)

for every f ≥ 0 and −∞ < λ < µ < +∞, both sides being possibly infinite.

Proof. For each n, we define a kernel V n
λ : E × E → [0,∞) by

V n
λ f(x) = Px

∫ n

0

e−λsf(Xs)1(ζ>s)ds, f ∈ bE .

Letting n → ∞, we see that V λ is the limit of an increasing sequence of kernels

on (E, E), thus is itself a kernel on (E, E). For the second assertion, let f be a

positive bounded Borel function. Integration by parts gives, for T = ζ ∧ n and

f ≥ 0,∫ T

0

e−λtf(Xt)dt

=

∫ T

0

e−µtf(Xt)dt+ (µ− λ)

∫ T

0

e−(λ−µ)t

∫ T

t

e−µsf(Xs)dsdt

=

∫ T

0

e−µtf(Xt)dt+ (µ− λ)

∫ T

0

e−(µ−λ)t

∫ T

t

e−λsf(Xs)dsdt.
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Letting n tend to infinity and using monotone convergence, we see that the above

also holds when T = ζ, both sides being possibly infinite. Now take expectations

on both sides, and note that

Vλf(x) = eλtPx
[∫ ζ

t

e−λsf(Xs)ds | Ft
]

on {ζ > t},

by the Markov property, whether this is finite or not. We immediately get (3.2).

We now show that, for each λ ∈ R, either the kernel Vλ only takes the values

0 and +∞, or it is transient when restricted to some subset Eλ ⊂ E. Here,

transient means that there exists a function g such that 0 < Vλg < +∞ on Eλ.

Moreover, when starting in Eλ, the process never enters E\Eλ in a finite time,

so that this part of the state space can be ignored.

As mentioned before, such a result has been known for a long time for specific

processes. Vere-Jones (1962) discusses discrete space and time, Kingman (1962)

allows continuous time, while Tweedie (1974a) treats discrete time and general

state space. Moreover, Tweedie shows that the exceptional set E\Eλ, which only

appears when the state space is non-denumerable, is not charged by the irre-

ducibility measure η. In discrete time, this is enough to guarantee that E\Eλ is

not visited again once the process enters Eλ. However, this is not so in continuous

time (and space), and a slightly more involved argument is necessary. This is the

main reason for stating and proving Theorem 3.3 below.

While, according to that theorem, the set E\Eλ can be ignored, it is not in

general empty. The following example illustrates the situation.

Example 3.2. Let the state space consist of the unit circle S1 in C together

with the origin {0}. The process X, when starting at {0}, waits for an expo-

nentially distributed random time with mean one before jumping to the point 1

of S1. Once there, it moves counterclockwise with constant speed v, while being

killed at rate β > 1. The irreducibility measure for this process is the Lebesgue
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surface measure η on S1.

Px

∫ ζ

0

e−λsf(Xs)ds =



∫∞
0
e−(λ+1)t

∫ t
0
e(1−β)sf(eivs)dsdt

+
∫∞

0
e−(λ+1)tf(0)dt if x = {0},∫∞

0
e−(λ+β)tf(ei(θ+vt))dt if x = eiθ ∈ S1.

Here, we must take Eλ = S1 in case 1 < −λ < β, as a simple computation shows.

The process never hits the origin from Eλ.

Note that in the previous example, any point x ∈ S1 has zero η measure, but

the process can (and sometimes does) still hit the set {x} in a finite time. Thus

it is not enough to prove that E\Eλ has zero η measure to dispense with it.

We are now ready to prove Theorem 3.3. The essential new feature in the

proof we present, as compared with the proofs of the corresponding result for

discrete time or state space (see Vere-Jones (1962), Tweedie (1974a)), is that the

set Ar of regular points for A defined below need not be empty. This can occur

only in the jointly continuous setting (assuming we restrict ourselves to stable

chains in the continuous time, discrete space setting).

Theorem 3.3. Suppose Assumption I holds. For every λ ∈ R, one and only one

of the following holds:

(i) Vλf ≡ 0 or Vλf ≡ +∞ for each f ≥ 0.

(ii) The kernel Vλ(x, dy) is transient when restricted to some set Eλ ⊂ E such

that E\Eλ is polar: 0 < Vλg < ∞ on Eλ for some function g satisfying

0 < g <∞, and

Px

(
Xt ∈ Eλ ∀t ∈ [0, ζ)

)
= 1, x ∈ Eλ.

Proof. We loose no generality in restricting λ ≤ 0, as we have Vλ(·, E) ≤ λ−1

if λ > 0. Suppose that Vλ(x0, B0) < ∞ for some accessible B0 ⊂ E and some

x0 ∈ E. The strictly positive function f(x) = Vλ(x,B0) is excessive for the

process X, since we have

Ptf(x) = eλtPx
[∫ ζ

t

e−λs1B0(Xs)ds; ζ > t
]
≤ f(x),
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from which we deduce f(x) = limt→0 Ptf(x). Now let A = {f = ∞}. By

Lemma 3.1, this is a Borel set. Denoting by TA its first hitting time (which is

therefore an (Ft) stopping time), we have X(TA) /∈ A in general. But X(TA) ∈

A ∪Ar, where Ar = {x : Px(TA = 0) = 1}. Because f is excessive, it follows that

(e.g. Chung (1982))

inf
A
f ≤ f(x) ≤ sup

A
f, x ∈ Ar,

and hence f(X(TA)) = ∞ a.s. on {TA < ∞}; combining these facts with the

Strong Markov property, we get, for any x ∈ {f <∞}:

∞ > Vλ(x,B0) = Px
[∫ ζ

0

e−λs1B0(Xs)ds
]

≥ Px
[
TA < ζ; e+λTA

∫ ζ

TA

e−λs1B0(Xs)ds
]

= Px
[
TA < ζ;PX(TA)

∫ ζ

0

e−λs1B0(Xs)ds
]

= Px(TA < ζ; f(XTA)),

and this clearly implies Px(TA < ζ) = 0.

We now set Eλ = {f < ∞}, and exhibit a strictly positive function g such

that 0 < Vλg < ∞ on Eλ. By the resolvent equation of Lemma (3.1), if we take

µ = 0, then g = V0(·, B0) <∞ on Eλ, and

∞ > Vλ(x,B0) = V0(x,B0)− λ(VλV01B0)(x)

≥ Vλg(x) ≥ V0g(x) > 0,

for all x ∈ Eλ as required.

Note also that, since E\Eλ is polar, we have V0(·, E\Eλ) = 0 on Eλ, and

hence η(E\Eλ) = 0 by irreducibility.

3.2 λ-Excessive Functions and Measures

By Theorem (3.3), the following parameter is well defined:

Λ∗ = inf{λ : Vλ is transient when restricted to Eλ 6= ∅}.
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Now set

E∗ =

EΛ∗ if EΛ∗ 6= ∅,⋂
nEΛ∗−1/n otherwise.

Clearly, the set E\E∗ is polar when starting from E∗ and so we can, and will

henceforth, restrict the process X to the state space (E∗, E ∩ E∗). To avoid

complicated notation, we denote this new state space again by (E, E). Now we

can say that, for each λ, the (restricted) kernel Vλ is either transient (certainly

when Λ∗ < λ), or else takes only the values 0 and +∞ (certainly if λ < Λ∗). We

therefore make the following classification:

Λ∗-recurrence/transience: If VΛ∗(x, dy) only takes the values 0 and +∞, we

say that the process X is Λ∗-recurrent. Otherwise, the kernel VΛ∗(x, dy) is

transient, and we call the process Λ∗-transient.

We shall look at Λ∗-recurrent processes more closely in the next section.

Example 3.4. If X is a Markov chain on a countable state space E, the irre-

ducibility (Assumption I) reduces to pt(x, y) > 0 for all x, y ∈ E. Kingman (1963)

showed that the integrals∫ ∞
0

e−λtpt(x, y)dt, x, y ∈ E,

either all converge or diverge simultaneously for a given value of λ. The critical

value Λ∗ is thus Kingman’s decay parameter for the transition probabilities.

In many ways, a more important parameter for quasistationary limit theorems

is the following:

Λ1 = inf{λ ≤ 0 : Vλ(·, 1) <∞}.

It is obvious that Λ∗ ≤ Λ1, but equality may not hold. The following alterna-

tive characterizations of Λ1 are sometimes useful.

Lemma 3.5. The following alternative characterizations of Λ1 exist:

(i) Λ1 = − sup{ε > 0 : Px(e
εζ , ζ <∞) < +∞}.
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(ii) Λ1 = inf{λ ≤ 0 : Px(ζ > t) = o(eλt) as t→∞}.

(iii) Λ1 = inf{λ ≤ 0 : a λ-excessive probability exists}.

(iv) Λ1 = inf{λ ≤ 0 : some λ-excessive function f satisfies 1 ≤ f <∞}.

Proof. Statements (i) and (ii) follow immediately upon using the identities

Vλ(x,E) =

∫ ∞
0

e−λtPx(ζ > t)dt

= (−λ)−1
(
Px(e

(−λ)ζ)− 1
)
.

For statement (iii), supposing that 0 ≥ λ > Λ1, the measure

µ(·) = Vλ(x, ·)/Vλ(x,E)(3.3)

is a λ-excessive probability; conversely, if a λ-excessive probability µ exists, then

by Fubini’s theorem, for ε > 0,∫
Vλ+ε(x,E)µ(dx) =

∫ ∞
0

e−(λ+ε)t〈µ, Pt1〉dt

≤
∫ ∞

0

e−εtµ(B)dt = ε−1 <∞,

which implies (since µ >> η) that Vλ+ε1 < ∞ a.e., and hence λ ≥ Λ1. For

statement (iv), if 0 ≥ λ > Λ1, then by (i), the function

f(x) = Ex(e
−λζ , ζ > 0)(3.4)

is excessive, and clearly f(x) ≥ Px(ζ > 0) = 1 on E by the Blumenthal zero-one

law. Conversely, let f be λ-excessive and satisfy 1 ≤ f <∞ on E, then

Vλ+ε(x,E) =

∫ ∞
0

e−(λ+ε)tPt(x, 1)dt

≤
∫ ∞

0

e−(λ+ε)tPt(x, f)dt

≤ f(x)/ε <∞,

and hence λ ≥ Λ1.
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The parameters Λ∗ and Λ1 need not be equal: suppose again that X is a

Markov chain on discrete state space, with transition matrix pt(x, y). King-

man (1963) proved

Λ∗ = lim
t→∞

1

t
log pt(x, x), x ∈ E,

whereas it is shown in Jacka and Roberts (1995) that

lim
t→∞

1

t
logPx(ζ > t) = Λ1,

provided this limit exists. When it does, they construct a Markov chain for which

Λ∗ < Λ1.

In the more general situation of this chapter, we can say that

lim t→∞
1

t
logPx(ζ > t) ≤ Λ1, x ∈ E.(3.5)

This follows from Lemma 3.5 by noting that, for every ε > 0, there exists a

function fε ≥ 1 which is (Λ1 + ε)-excessive. Using this function in the inequalities

1

t
logPx(ζ > t) ≤ 1

t
logPx(fε(Xt), ζ > t)

≤ 1

t
log
(
fε(x)e(Λ1+ε)t

)
= Λ1 + ε+

1

t
log fε(x),

we get (3.5) upon first letting t → ∞, and then ε → 0. A corresponding lower

bound requires further assumptions. We can show that

lim t→∞
1

t
logPx(ζ > t) ≥ λ, x ∈ E,(3.6)

provided a bounded λ-invariant function ϕ exists. For to get (3.6), it suffices to

let t→∞ in the inequality

1

t
logPx(ζ > t) ≥ 1

t
logPx(ϕ(Xt), ζ > t)

=
1

t
log
(
ϕ(x)eλt

)
= λ+

1

t
logϕ(x).



44 Solidarity Results and Λ∗-Recurrence

On combining (3.5) and (3.6), we see that bounded λ-invariant functions can

only exist if λ ≤ Λ1.

Part (i) of Lemma 3.1 in fact shows that Λ1 < 0 can occur only if the lifetime

of X has all finite moments:

Px[ζ
k] ≤

∞∑
n=0

(εn/n!)Px(ζ
n) = Px[e

εζ ] <∞, k ≥ 0.

The relationship between the parameter Λ1 and exit times can be taken some-

what further (recall that σA denotes the first exit time from a set A):

Proposition 3.6. Suppose that A ⊆ B. If infx∈A Px(σA > 0) > 0, then also

inf
x∈A

Px[σA] ≤ 1

|Λ1|
.(3.7)

If there exists either a bounded λ-invariant function or λ-invariant probability

measure, then

1

|λ|
≤ sup

x∈B
Px[ζ].

Proof. (i) If Λ1 = 0, there is nothing to prove. Otherwise, take ε > 0 such that

Λ1 + ε < 0, and let f ≥ 1 be (Λ1 + ε)-excessive. For any x ∈ A, we have

(inf
y∈A

f(y)) · Px(σA) ≤ Px
∫ σA

0

f(Xs)ds

≤ Px
∫ ζ

0

f(Xs)ds

≤ f(x) ·
∫ ∞

0

e(Λ1+ε)sds

≤ |Λ1 + ε|−1 f(x),

from which we get, upon taking the infimum over x ∈ A,

inf
x∈A

Px(σA) ≤ |Λ1 + ε|−1 ,

and it remains only to let ε tend to zero.

(ii) Take µ to be λ-invariant (λ < 0) and such that µ(1) <∞. Then

|λ|−1 〈µ, 1〉 = 〈µV0, 1〉 = Pµ(ζ) ≤ 〈µ, 1〉 · sup
x∈E

Ex(ζ).
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Otherwise, take f to be λ-invariant and such that supx∈E f(x) = 1. Then

f(x) = |λ|V0f(x) ≤ |λ|V01(x) = |λ|Px[ζ],

and it remains only to take the supremum over x on both sides of the inequality.

We now give some examples to which the bounds in Proposition 3.6 apply.

Example 3.7. Suppose that X is an elliptic diffusion on a connected,

bounded domain E ⊂ R
d with smooth boundary. It is well known (see Pin-

sky (1995)) that there exists a unique bounded positive λ-invariant function,

known as the ground state of the differential operator L = A. The number λ is

the principal eigenvalue of L, and the process is in fact positive λ-recurrent (see

next section). Thus Λ∗ = Λ1 = λ here. The first bound in Proposition (3.6) is

uninteresting, since infx∈A Px[σA] = 0 for all nice sets A. However, the second

inequality provides a lower bound on the modulus of the principal eigenvalue,

|Λ| ≥
(

sup
x∈E

Px(ζ)

)−1

.

Example 3.8. Suppose that X is a Markov chain with a countable state

space E = {1, 2, 3, . . . }. Taking A = {x} for each x ∈ E in turn, we find that

|Λ1| ≤ inf
x∈E

(
Px[σx]

)−1

= inf
x∈E

q(x),

where q(x) = −q(x, x) is the diagonal element of the q-matrix, i.e. Px(σx > t) =

e−q(x)t. Thus Proposition (3.6) generalizes a well known bound (see Kingman

(1963)). To illustrate the second inequality in Proposition (3.6), suppose that

the state space E is finite and irreducible, in which case the expectation Px[ζ]

is uniformly bounded over x ∈ E. It is known (Seneta and Vere-Jones (1966))

that the process X is Λ∗-recurrent. Alternatively, we can note that the semigroup

(Pt), being representable by a finite matrix, is a compact operator on the set of all
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functions on E. Its spectrum thus consists only of eigenvalues, and the Perron-

Frobenius theorem guarantees that the largest eigenvalue λ has an associated

positive eigenfunction/eigenmeasure pair. Since their sum is finite, Tweedie’s

test (see next section) implies that λ = Λ∗ = Λ1 and the process is Λ∗-recurrent.

We again get a lower bound

|Λ| ≥
(

sup
x∈E

Px(ζ)

)−1

.

For a finite, irreducible state space, the function x 7→ Px[ζ] is the solution to the

matrix equation ∑
y∈E

q(x, y)Py[ζ] = −1, x ∈ E.

For example, if we assume that X can leave the state space from anywhere

within E, and writing v(x) = Px[ζ], v = maxx∈E v(x), we have

v(x) ≤ q(x)−1

(
1 + v

∑
y 6=x

q(x, y)

)
,

which after rearranging gives

v ≤ maxx∈E q(x)−1

1−maxx∈E
∑

y 6=x q(x, y)/q(x)
,

and hence

|Λ| ≥
minx∈E

(
1−

∑
y 6=x∈E q(x, y)/q(x)

)
maxx∈E q(x)−1

.

If Λ1 < 0, there may be many λ-invariant probability measures; however,

these can occur only for Λ1 ≤ λ < 0. If a 0-invariant probability µ were to exist,

then because Pµ(ζ > t) = µ(1) = 1, we would have Px(ζ > t) = 1 a.e., meaning

that the constant function 1 is 0-invariant. As a result, we would have Λ1 = 0, a

contradiction.

Both examples given fall into the category of Λ1-recurrent processes, which

are treated in more detail in the next section. We end this section with a small

result on the spectral structure of Λ1-transient processes.
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In various papers (see van Doorn (1991), Pakes (1995), Martinez and San

Martin (1994)), it has been observed that certain processes X can have a contin-

uum of quasistationary distributions. More precisely, these studies have shown

the existence of λ-invariant probability measures µλ for every λ ∈ [Λ1, 0). By

using Proposition (3.6), we see that this necessitates a weak form of “asymptotic

remoteness”, a concept discussed at length in Pakes (1995), and which we shall

define in Chapter 5:

Corollary 3.9. If a continuum (µλ : λ ∈ [Λ1, 0)) of λ-invariant probabilities

exists, we have necessarily

sup
x∈E

Px[ζ] = +∞.(3.8)

The condition (3.8) is not sufficient for the existence of a continuum (µλ : λ ∈

[Λ1, 0)), as an example in Ferrari et al. (1995) shows. Indeed, the condition (3.8)

is compatible with Λ1-recurrence. One may wonder whether (3.8) together with

knowledge that X is Λ1-transient is sufficient.

3.3 Λ∗-Recurrence

In this section, we group together various well known results about Λ1-recurrent

processes, in a version appropriate to the general Markov processes we study.

For the most part, these results are due to Tweedie (1974a,b) and Tuominen

and Tweedie (1979). We also give a counterexample, to show that positive Λ1-

recurrence in general state space is not sufficient for the existence of a Yaglom

limit. This is in stark contrast to the case of countable state spaces, or even

merely discrete time.

For the remainder of this section, we fix a process X, which is assumed Λ∗-

recurrent. Recall that, for any Λ ∈ R, Λ-recurrence means that VΛf ≡ 0 or ∞

for any f ≥ 0 and not just VΛ1 ≡ ∞, and similarly Λ-transience means that

VΛg < ∞ for some g > 0 and not necessarily VΛ1 < ∞. We shall in fact often

assume that X is Λ1-recurrent, which means that we also have Λ∗ = Λ1.
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The results below are due to Tweedie (1974a,b,c) and Tuominen and Tweedie

(1979) in a series of papers devoted to the Λ-classification theory of discrete time

and continuous time Markov processes on general state space. We begin with the

probabilistic form of the well known Perron-Frobenius theorem on the spectrum

of positive matrices.

Theorem 3.10 (Tuominen and Tweedie (1979)). If X is Λ∗-recurrent and

satisfies Assumption I (ν-irreducibility), there exists a unique strictly positive, fi-

nite Λ∗-excessive function (resp. measure), and this is in fact Λ∗-invariant. There

are no other λ-invariant functions (resp. measures) if λ ∈ (Λ∗, 0).

This result does not preclude the existence of λ-harmonic functions (resp.

measures) if λ ≥ Λ∗. If the Λ∗-invariant measure whose existence is claimed

above is bounded, we also have Λ∗ = Λ1.

We introduce the following standard terminology:

Positive/null Λ∗-recurrence: If X is Λ∗-recurrent, let µ (resp. f) be the

unique nontrivial measure (resp. function) satisfying µPt = eΛ∗tµ (resp.

Ptf = eΛ∗tf); X is called positive if 〈µ, f〉 < +∞, and null otherwise.

Tweedie (1974) gave a useful condition for testing positive Λ∗-recurrence. His

result was originally proved for discrete time Markov chains, but also applies to

continuous time processes via the resolvent chain with one-step transition function

pVp(x, dy), p > 0, and a Laplace transform inversion.

Proposition 3.11 (Tweedie’s Test (Tweedie (1974b))). Let λ ≤ 0, and sup-

pose that some nontrivial measure µ (resp. finite positive function f) satisfies

µPt ≤ eλtµ (resp. Ptf ≥ eλtf). Then 〈µ, f〉 < +∞ if and only if λ = Λ∗ and X

is positive Λ∗-recurrent.

This result can be “dualized” as follows:

Proposition 3.12 (Tweedie’s Test (dual version)). Let λ ≤ 0, and suppose

that some nontrivial measure µ (resp. finite positive function f) satisfies µPt ≥
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eλtµ (resp. Ptf ≤ eλtf). Then 〈µ, f〉 < +∞ if and only if λ = Λ∗ and X is

positive Λ∗-recurrent.

Proof. We may assume without loss of generality that ζ <∞ a.s. , for otherwise

we can always take f = 1 and λ = 0, and the test reduces to checking standard

positive recurrence. Consider the time reversal X̂t = Xζ−t. It is well known

(Chung and Walsh (1970), Dellacherie and Meyer (1992)) that under Pµ, the

process X̂ has a semigroup P̂t in duality with Pt:∫
Pth(y) · k(y)µV0(dy) =

∫
h(y) · P̂tk(y)µV0(dy), h, k ≥ 0.(3.9)

Multiplying both sides of this equation by e−pt and integrating over t gives the

equation

∫
Vp(y, h) · k(y)µV0(dy) =

∫
h(y) · V̂p(y, k)µV0(dy), h, k ≥ 0, p ∈ R,

and this shows immediately that X and X̂ have the same Λ∗-recurrence/tran-

sience classification under Pµ. Moreover, the assumption µPt ≥ eλtµ implies

µV0 � µ, and hence there exists a Radon-Nikodym derivative f̂ such that µ(dy) =

f̂(y)µV0(dy). Using (3.9) we see that P̂tf̂ ≥ eλtf̂ , except perhaps on a µV0-null

set. Similarly, if we let µ̂(dy) = f(y)µV0(dy), we find that µ̂P̂t ≤ eλtµ̂. Using

Tweedie’s test with µ̂, f̂ shows that X̂ is positive Λ∗-recurrent (and consequently

so is X) if and only if 〈µ̂, f̂〉 = 〈µ, f〉 < +∞.

The dual version of Tweedie’s Test is not just provided for reasons of symme-

try. In practice, the original test is typically used as follows:

(i) Find a λ-excessive measure µ and function f such that 〈µ, f〉 < +∞.

(ii) Check that f is λ-invariant.

By using the dual version of the test, (ii) is replaced by

(ii’) Check that µ is λ-invariant.
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This may well be easier, especially since the methods for checking (ii’) have been

developed extensively. See Pollett (1988, 1995), Hart and Pollett (1997).

Example 3.13. Let X be a uniformly elliptic diffusion on a bounded open

subset E ⊂ R
d with smooth boundary. The following facts may all be found

in Pinsky (1995): The potential operator V0(x, dy) = v0(x, y)dy is compact on

the space of bounded continuous functions which vanish on the boundary of E.

It follows by the Krein-Rutman theorem (which is the analogue, for positive

operators, of the Perron-Frobenius theorem) that there exist strictly positive,

continuous functions ϕ(x), ϕ∗(x) and a number λ satisfying Vpϕ(x) = −λϕ(x),

V ∗0 ϕ
∗(x) = −λϕ∗(x), and ϕ(x) = ϕ∗(x) = 0 on ∂E. Here V ∗0 (x, dy) = v0(y, x)dy.

Using the resolvent equation gives ϕ(x) = (p−λ)Vpϕ(x), and inverting the Laplace

transform produces the equation Ptϕ(x) = eλtϕ(x). Entirely analogously, one gets∫
ϕ∗(x)Pt(x, dy) = eλtϕ∗(y)dy. Tweedie’s Test now applies to µ(dx) = ϕ∗(x)dx

and f(x) = ϕ(x). Since the eigenfunctions are continuous and the closure of E

is compact,

〈µ, f〉 =

∫
ϕ∗(x)ϕ(x)dx < +∞,

and the process X is Λ∗-recurrent. The number λ = Λ∗ is known as the principal

eigenvalue of the generator L on E, with Dirichlet boundary conditions.

Example 3.14. Let X be a Markov chain on a finite state space. The fact

that this process is Λ∗-positive recurrent was shown by Seneta and Vere-Jones

(1967). Alternatively, the exact same method as in the previous example can be

used, mutatis mutandis.

We shall now state the most general known results relating to Yaglom limits

and Λ∗-recurrent processes. Before doing so, we state a stronger form of irre-

ducibility than Assumption I.

Simultaneous skeleton irreducibility: For some nontrivial irreducibility mea-

sure ν,

ν(A) > 0 implies
∞∑
n=0

Px(Xnδ ∈ A) > 0, δ > 0.
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This form of irreducibility implies Assumption I, but is strictly stronger; it

allows the application of discrete time methods in continuous time situations. The

theorem below is no longer true if X is not simultaneously skeleton irreducible.

A counterexample will be discussed below.

Theorem 3.15 (Tuominen and Tweedie (1979)). Suppose that X is simul-

taneously skeleton irreducible. Then X is positive Λ∗-recurrent with a bounded

Λ∗-invariant measure κ and Λ∗-invariant function ϕ if and only if the following

limits all exist a.e. with respect to η (the maximal irreducibility measure):

(i) limt→∞ Px(f(Xt) | ζ > t) = 〈f, κ〉/〈κ, 1〉, x a.e. , f ∈ L∞(κ),

(ii) lims→∞ limt→∞ Px(f(Xs) | ζ > t+ s) = 〈κ, ϕf〉/〈κ, ϕ〉, x a.e. , f ∈ L∞(κ),

(iii) limt→∞ Px(ζ > t)/Py(ζ > t) = ϕ(x)/ϕ(y), x, y a.e.

The source of the equivalence between positive Λ∗-recurrence with bounded κ

and the existence of limits (i), (ii), (iii) in Theorem (3.15) is mainly the limit (ii),

known as the doubly limiting conditional distribution. There are many examples

of Λ∗-transient processes for which the limits (i) and (iii) exist, but the double

limit (ii) must tend to zero.

Indeed, as we shall see in the next chapter, it is often possible to define a new

Markov process Y with law Qx and infinite lifetime such that

Qx(f(Yt)) = lim
s→∞

Px(f(Xt) | ζ > s).

The limit (ii) in Theorem (3.15) exists as stated (defining a probability measure

π(dx) proportional to ϕ(x)κ(dx) only if Y is positive recurrent. Since under Qx,

(Yt) has transition semigroup Qt(x, dy) = e−Λ∗tPt(x, dy)ϕ(y)/ϕ(x), this process

can be recurrent if and only if (Xt) is, under Px, Λ∗-recurrent.

The simultaneous irreducibility condition cannot be dropped entirely, as the

following counterexample shows.

Example 3.16. Let E = S1, and consider the Markov process X defined in

the following way. Starting in x ∈ E, the process performs a counterclockwise
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motion with unit speed, until the lapse of an exponential time with mean ρ, after

which it dies. The transition semigroup of X is given by

Pt(e
iθ, f) = e−ρtf(ei(θ+t)), eiθ ∈ S1,

and it is easy to see that X is Λ∗-recurrent with Λ∗ = −ρ. Moreover, the unique

Λ∗-invariant function is f = 1, while the Λ∗-invariant measure κ is Lebesgue

surface measure on S1. Thus the process is positive Λ-recurrent, by Tweedie’s

Test. It is easy to check that the Yaglom limits

lim
t→∞

Px(g(Xt) | ζ > t), x ∈ E,

do not exist for any x ∈ E, even though 〈κ, 1〉 = 1. However, the process

can still be conditioned to live for ever, and the resulting process Y is ordinary

counterclockwise motion on S1. Clearly, the simultaneous skeleton irreducibility

fails for the process X, although Assumption I holds (with η being Lebesgue

surface measure).

This example sits in contrast to the situation encountered with Markov chains

on countable state spaces, where positive Λ∗-recurrence together with 〈κ, 1〉 <

+∞ always implies, not only the success of process level conditioning, but also

the existence of Yaglom limits from all possible initial distributions. The process

X has a periodic transition semigroup Pt(x, dy), something a Markov chain on a

countable state space can never have.

3.4 Branching Markov Processes

The contents of this section can be found in standard references such as Ikeda,

Nagasawa and Watanabe (1968,1969) or Asmussen and Hering (1983), to which

we refer for proofs of all the statements below. Our only aim is to introduce the

concepts and notation we shall use in the following section.

We start with our transient Strong Markov process X = (Ω,F ,Ft,Px, Xt, ζ)

evolving on the state space (E, E). A branching Markov process B over X can be

constructed as follows. Suppose we place a particle in E and let it evolve according
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to the law of X. At the same time, we take an independent, exponentially

distributed time τ with mean γ−1, called the first branching time. When τ occurs,

we replace instantaneously the particle (provided it hasn’t died already) with a

random number of identical particles, all placed at the current location of the

original particle. These new particles now evolve independently and according

to the law of X, each carrying its own independent branching time, upon the

occurrence of which a new batch is born, and so forth.

The process (Bt), representing the number and locations of all particles in

existence, is called a branching Markov process over X. It is a Strong Markov

process itself (Ikeda, Nagasawa, Watanabe (1968,1969)) and is described formally

below. For the interpretation of the solidarity results, we will be interested also

in another process, denoted by Z, whose significance is that it counts for each

subset A ⊂ E the number of particles in A at time t. This is achieved by a

measure-valued process Zt(dy).

We now introduce the formal framework. For each n ≥ 1, let E(n) denote the

unordered product of n copies of E, with corresponding Borel σ-algebra. We set

Ê =
∞⋃
n=0

E(n),

with E(0) = {∅}. Here, a point x̂ = (x1, . . . , xn) ∈ E(n) represents the joint

location of n particles, while ∅ stands for the nonexistence of particles. A σ-

algebra Ê is generated by the unordered sets of the form

Â = A1 × A2 × · · · × An = A2 × · · · × An × A1 = etc., Ai ∈ E, n ≥ 0.

Let (Bt) denote the coordinate process on the space Ω̂ of Ê-valued paths, with

corresponding natural filtration (Gt0), and lifetime ζ̂ = inf{t > 0 : Bt /∈ Ê}. We

say that a family (Qx̂ : x̂ ∈ Ê) of probability measures turns B into a branching

Markov process if B = (Ω̂, Bt,Gt,Qx̂, ζ̂) is a Strong Markov process and if the

following branching property holds: For any function f(x) on E, define f̂ to be



54 Solidarity Results and Λ∗-Recurrence

a function on Ê by

f̂(x̂) =

1 if x̂ = ∅,∏n
k=1 f(xk) if x̂ = (x1, . . . , xk),

for every function f on E such that |f | ≤ 1, we require

Qx̂(f̂(Bt), ζ̂ > t) =

(
Qx(f̂(Bt), ζ̂ > t)

)̂
,(3.10)

for all t > 0 and functions f with |f | ≤ 1. This property characterizes branching

Markov processes, and in fact, the σ-algebra Ê is generated by functions of the

form f̂ , where f ranges over all functions in the unit ball. By the branching

property (3.10), it is enough to construct the measures (Qx : x ∈ E) to get a

realization of B.

Suppose now that π(x, dŷ) is a Markovian kernel on E × Ê which we will,

moreover, assume to be of the form

π(x, dŷ) =
∞∑
n=2

pnε(x, · · · , x)︸ ︷︷ ︸
n

(dŷ).

When branching occurs at time τ , the branching particle Xt is replaced by a

population distributed according to π(Xτ−, ·). The form of π prescribes that X

should be replaced by n particles with probability pn. If the particles behave

identically to the Markov process X = (Ω,Ft, Xt,Px, ζ), we can solve for the

semigroup of the process B, Qt(x̂, g) = Qx̂(g(Bt), ζ̂ > t), by writing

Qx(g(Bt), ζ̂ > t) = Qx(g(Bt), ζ̂ > t, τ > t)

+

∫ t

0

∫
E

Qx(τ ∈ ds, ζ̂ > s,Bτ− ∈ dy)

∫
π(y, dẑ)Qẑ(g(Bt−s), ζ̂ > t− s),

which transforms into

(3.11) Qx(g(Bt), ζ̂ > t) = e−γtPx(g(Xt), ζ > t)

+
∞∑
n=2

pn

∫ t

0

γe−γsPx

[(
QXs(g(Bt−s), ζ̂ > t− s)

)n
, ζ > s

]
ds,
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provided g = f̂ for some f and τ is distributed exponentially, with mean γ−1. We

call γ the branching rate. When Qx satisfies (3.11), we say that B is a branching

Markov process over X, with branching rate γ.

The semigroup (Qt) which solves (3.11) is unique provided the corresponding

lifetime ζ̂ is infinite. This occurs in our setting if the mean number of offspring

is finite:

ζ̂ = +∞ a.s. if
∞∑
n=2

n · pn <∞.

We shall always assume this to be the case. It does not preclude the process

dying out in the sense of being trapped in ∅.

3.5 Solidarity Results Interpreted

Suppose that f is a bounded real-valued function on E, and set

g(x̂) = gf (x̂) =

0 if x̂ = ∅,∑n
k=1 f(xk) if x̂ = (x1, . . . , xk) ∈ E(n).

For each t ≥ 0, we define a random measure Zt(dy) on E by the prescription

〈f, Zt(ω̂)〉 = gf (Bt(ω̂)).

Upon taking f as the indicator function of a set A ⊂ E, we see that Zt(A) counts

the number of particles alive and belonging to A at time t.

Now let θ > 0 be some real number, and notice that

e−θ〈Zt,f〉 = eg−θf (Bt) = ê−θf (Bt).

Inserting this function into (3.11), we find (assuming ζ̂ = +∞ from now on)

(3.12) Qx[e
−θ〈Zt,f〉] = e−γtPx[e

−θf(Xt), ζ > t]

+
∞∑
n=2

pn

∫ t

0

γe−γsPx

[(
QXs [e

−θ〈Zt−s,f〉]

)n
, ζ > s

]
ds.
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For f ≥ 0, we now differentiate (from one side) this equation with respect

to the variable θ, and let θ ↓ 0. The result is an equation for the first moment

v(t, x) = QxZt(f) (see Ikeda, Nagasawa and Watanabe (1968,1969) or Asmussen

and Hering (1983)):

v(t, x) = e−γtPt(x, f) +
∞∑
n=2

npn

∫ t

0

γe−γsPs(x, v(t− s, ·))ds.

It is easy to verify that the above equation is solved by the function v(t, x) =

eaγtPt(x, f) with a =
∑∞

n=2 npn. The solution is known to be unique, so we have

in fact

Proposition 3.17. For each bounded function f ,

QxZt(f) = e(c−1)γtPt(x, f), c =
∞∑
n=2

npn.

The semigroup e(c−1)γtPt which we have obtained is known as the moment

semigroup of B.

The interpretation of the solidarity results is now obvious. Suppose that only

two particles are born at a time (or more generally that the mean number of

offspring is 2, if we include the possibility p0 > 0 of no offspring being created).

Theorem 3.18. Suppose c = 2, and Assumption I holds. If λ > Λ∗ (or λ ≥ Λ∗

if X is Λ∗-transient) then the branching Markov process B with rate γ = −λ

satisfies

Qx(Bt → ∅) = 1.

If λ < Λ∗, then the expected number of particles in any one set grows without

bound or is a.s. identically zero for all times.

Proof. Suppose first that the kernel Vλ(x, dy) is transient. There exists a sequence

of sets Ek ↑ E such that Vλ(x,Ek) <∞. Thus by the Proposition (3.17),∫ ∞
0

QxZt(Ek)dt = Vλ(x,Ek) <∞,
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which implies that QxZt(Ek) → 0 as t → ∞. But Zt(Ek) can only take integer

values, hence Qx(Zt(Ek) > 0) ≤ Qx(Zt(Ek)) and we have a.s. Zt(Ek) = 0 for

t sufficiently large; the set Ek being arbitrary, we must have Qx(Bt → ∅) = 1.

When λ < Λ∗, let A be any measurable subset of E. Then Vλ(x,A) = 0 or +∞

according as the function t 7→ e−λtPt(x,A) = QxZt(A) is either identically zero,

or grows without bound. Indeed, if in the latter case e−λtPt(x,A) were bounded,

multiplying by e−εt (ε > 0) and integrating would show that λ+ ε ≥ Λ∗, so that

in view of the arbitrariness of ε we must have λ = Λ∗.

Thus the branching process B is critical, subcritical or supercritical depending

on whether λ = Λ∗, λ > Λ∗ or λ ≤ Λ∗, respectively.

The λ-invariant measures, functions, etc. have equally simple interpretations,

namely:

(i) A measure µ is λ-invariant for X if and only if µ is an invariant measure for

the counting process Z associated with B when the branching rate is −λ.

If µ is a quasistationary distribution, then it is an equilibrium distribution

for Z.

(ii) A function ϕ is λ-invariant for X if and only if the process 〈Zt, ϕ〉 is a

positive martingale under each Qx, x ∈ E. Indeed, this follows by the

branching property (see Asmussen and Hering (1983), p.154) and

Qx[Zt(ϕ) | Gs] = 〈Zs,Q·[Zt−s(ϕ)]〉 = 〈Zs, e−Λ∗(t−s)Pt−s(·, ϕ)〉 = 〈Zs, ϕ〉.

(iii) A Yaglom limit of the type

lim
t→∞

Pν(f(Xt) | ζ > t) = 〈κ, f〉(3.13)

exists if and only if, for every branching rate λ < 0,

lim
t→∞

Qν [Zt(f)]/Qν [Zt(g)] = 〈κ, f〉/〈κ, g〉(3.14)

holds for all bounded functions f , g with 〈κ, g〉 6= 0. Thus we may inter-

pret (3.13) as the continuation of (3.14) in the degenerate case when the
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branching rate is zero. We also mention that Asmussen and Hering (1983)

have investigated the existence of the limit

lim
t→∞
〈Zt, f〉/〈Zt, g〉

a.s.
= 〈κ, f〉/〈κ, g〉,(3.15)

in the case that X is positive Λ∗-recurrent, under slightly stronger assump-

tions than those of Theorem (3.15). These assumptions are satisfied by

finite Markov chains, or uniformly elliptic diffusions on bounded domains.

3.6 Open questions

We have seen that the quasistationary tool box is well understood for positive

Λ∗-recurrent processes, and in view of the counterexample after Theorem 3.15, at

least for Markov chains and diffusions. The examples given in Section 3 suggest

that such processes will have in some sense small state spaces, with no room to

wander about without returning often to regions already visited. This line of

argument certainly accounts for the cases of finite Markov chains and uniformly

elliptic diffusions on bounded domains; in the latter, dropping the assumed uni-

formity allows the process to “slow down” arbitrarily, effectively making the state

space much bigger than it is.

In both examples, one can show that the resolvent operators are compact

on spaces of continuous functions, after which standard spectral theory (Krein-

Rutman and Perron-Frobenius theorems) gives the Λ∗-invariant measure and

function. If the process is symmetric, then the same procedure will work when

the resolvent generates a Hilbert-Schmidt operator. This gives some examples

of positive Λ∗-recurrent processes on unbounded domains. For example, this is

often the case when X is the Brownian motion, killed upon exiting a set of finite

Lebesgue measure (this set need not be bounded). The semigroup pt(x, y)dy has

an eigenfunction expansion

pt(x, y) =
∞∑
k=0

eλktϕk(x)ϕk(y),
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and the function ϕ0(x) is the unique (positive) λ0-invariant function.

An open problem here is to find some other set of conditions, which are

easy to check and will ensure Λ∗-recurrence. One promising direction may be

to look for Doeblin-type conditions (see Meyn and Tweedie (1993), Jacka and

Roberts (1995)).

In another direction, the interpretation of the solidarity results in terms of

branching Markov processes over X offers some exciting prospects. As men-

tioned before, the relationships between Λ∗-recurence and Yaglom limits have

been extensively studied by Asmussen and Hering (1983). I am not aware of

similar results in the case when X is Λ∗-transient. Does the existence of a Ya-

glom limit for X imply the existence of limits (3.15)? Secondly, the branching

process B need not have a constant growth rate γ; it may be state-dependent:

γ = γ(x). It seems reasonable that the decay theory and Λ∗-classification should

extend without major changes. Can the analogous theory in this chapter be used

to shed some light on gauge theorems? See Chung (1995) and Sturm (1991).
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Chapter 4

Conditioned Processes and

Harnack’s Inequality

This chapter and the next present a new approach to the main quasistationary

tool box theorems, by linking them with the parabolic Martin boundary. Here, we

deal with the conditioned process. After a description of the Martin boundary of

X intended to complement the facts laid out in Chapter 2, the major assumptions

are progressively introduced: the parabolic Harnack inequality is shown to hold

for Markov chains and diffusions (the latter is well known), the set of parabolic

functions is shown to be closed if the process has bounded jumps, and cemetery

neighbourhoods are introduced. These are then used to characterize a part of the

boundary. The main result is Theorem 4.21. It combines all these ideas into a

sufficient condition for the success of process level quasistationary conditioning.

4.1 Parabolic Martin Boundary

We now make an assumption which will stay in effect throughout the chapter.

Assumption II: The process X has a semigroup given by

Pt(x, dy) = pt(x, y)m(dy),

61
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with a strictly positive, jointly continuous transition density (in all three

variables). The measure m is assumed finite on compact sets.

Assumption II is quite strong. There are two reasons which justify it here.

Firstly, we will be discussing tool box theorems foremost in the Martin topology.

This topology is usually distinct from the original topology of E, especially when

nothing is assumed about X (see Jeulin (1978) or Rogers and Williams (1994),

where a Martin topology is constructed as the Ray-Knight compactification of

the time reversal of X; examples in Getoor (1971) show that the Ray-Knight

topology need not be comparable to the original topology). Our aim is to prove

theorems which are applicable in the original topology, and it is here that As-

sumption II becomes useful. Secondly, the two classes of processes which are of

greatest interest in this thesis, diffusions and Markov chains, typically do satisfy

Assumption II.

Thus the assumption is relatively harmless. The strict positivity requirement

represents a form of irreducibility. It clearly implies Assumption I, but is stronger

than it.

Recall that Xr = (Lr, Xr) denotes the backward spacetime process on (a, b]×

E. We shall be mainly interested in the case (a, b] = (−∞, 0], and we put

E = (−∞, 0]× E. By Assumption II, X has an absolutely continuous resolvent

(see (2.4)) in Chapter 2). In particular, the potential V 0 has a density with

respect to the measure η(ds, dy) = ds⊗m(dy) given by

v0((t, x); (s, y)) = pt−s(x, y)1(−∞,t)(s).

Now let r(ds, dy) be a normalizing probability measure on E, and define the

Martin kernel in terms of it (see (2.4) in Chapter 2). We are mostly interested

in the case that r(ds, dy) = ε0(ds)ν(dy) where ν is a probability measure on E

such that (t, y) 7→
∫
ν(dx)pt(x, y) is continuous. The (spacetime) Martin kernel

now takes the form

K

(
(t, x); (s, y)

)
=

1(−∞,t)(s)pt−s(x, y)∫
ν(dz)p−s(z, y)

, t, s < 0, x, y ∈ E.
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The Martin topology is induced by a metric

d(y, z) =

∫
1 ∧

∣∣K(x, y)−K(x, z)
∣∣ · f(x)η(dx),

where f(x)η(dx) is any probability measure equivalent to η. We denote by F the

completion of E by d. It is well known (e.g. Doob (1984), p.197, or Meyer (1968))

that F is compact and that K(x, ·) has a continuous extension to F , for each

x ∈ E. The continuity of K(x, ·) in the original topology, which comes from the

continuity of pt(x, y), is used to show that the original and Martin topologies

coincide on E.

The Martin boundary is ∂E = F\E. For each y ∈ F , the function K(·, y)

(defined on E) is excessive, but not always minimal. We shall be mainly interested

in that part of the boundary, which we shall denote by F−∞, consisting of points

y = limn→∞(sn, yn) ∈ E with the property that limn→∞ sn = −∞. These points

have previously been studied in conjunction with the so called ratio limit property

(see Pakes (1995), Kesten (1995) and references therein). Indeed, if the sequence

(yn) is constant and equal to y ∈ E, and ν is the probability mass concentrated

at a single point ν(dz) = εx0(dz), then

K

(
(t, x); y

)
= lim

rn→∞

prn+t(x, y)

prn(x0, y)
, rn = −sn.

We recognize the spacetime function K(·, y) as a possible limit point of the ratio

(t, x) 7→ pt+r(x, y)/pr(x0, y).

The Strong Ratio Limit Property (SRLP) states that there exist functions f ,

g and a constant λ such that

lim
t→∞

pt+s(x, y)

pt(x0, y0)
= eλs

f(x)g(y)

f(x0)g(y0)
.

Its use in proving quasistationary limit theorems is well established; see Ander-

son (1991). In terms of Martin boundary theory, it implies that all sequences of

the form yn = (sn, y) with sn → −∞ converge to the same boundary point y,

whose associated spacetime excessive (actually parabolic) function is

K

(
(t, x); y

)
= eλtf(x), 〈ν, f〉 = 1.
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This function also appears when we condition X to have infinite lifetime. This

will be discussed in detail below, where we shall derive, under suitable conditions,

a weakened form of the SRLP. However, this theory requires various conditions,

which must be dealt with first.

4.2 Parabolic Harnack Inequality

In this section, we discuss the following assumption.

Parabolic Harnack Inequality: Let s > a > 0 be positive real numbers, and

K be compact in E. For each δ > 0 there exists a constant C > 0 such that

sup
r∈[0,a]

sup
x∈K

u(t+ r, x) ≤ C · inf
y∈K

u(t+ s, y), t > δ,

holds for all parabolic functions u(t, x) in (0,∞)× E.

This inequality will be essential in proving many of the results below. Note

that K is strictly contained in E.

Example 4.1. Suppose that X is a uniformly elliptic diffusion on a (possibly

unbounded) domain E ⊂ Rd (see Chapter 2). It was first shown by Moser (1964)

that the parabolic Harnack inequality holds, in the form

u(t, x)

u(t+ r, y)
≤ expA

(
‖x− y‖2

r
+

r

d2
+ 1

)
,

with constants A > 0 and 0 < d < t depending only on K (and the generator L).

See Friedman (1964), and also Ancona (1991).

Example 4.2. Let X be an irreducible Markov chain with a countable state

space. Here, a set is compact if and only if it is finite. Let K be such a set. Since

the state space E is taken to be irreducible, for any x, y ∈ K, there always exists

a finite chain of states x1, . . . , xn such that X can jump from x to x1, from x1 to

x2, . . . , xn → y. We construct a new set K̃ from K by adding all these states

to K, for any combination of states x, y ∈ K. The set K̃ need not be uniquely

determined, but it can always be taken finite, and thus compact, since there are
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only finitely many ordered pairs (x, y) with x, y ∈ K. The usefulness of K̃ stems

from the fact that X can get from x ∈ K to y ∈ K without ever leaving K̃.

Proposition 4.3. The parabolic Harnack inequality holds with

C(K, δ, a) =

(
inf

r∈[0,a]
inf
x,y∈K

Px(Xs−r = y, σK̃ > s− r)
)−1

,

where σK̃ = inf{t > 0 : Xt /∈ K̃} and K̃ is constructed from K as above.

Proof. Let u(t, x) be parabolic, and choose K compact (finite) with x, y ∈ K.

Fix s, t > 0, and let T denote the first exit time of X from the set [δ,∞) × K̃.

Under the probability measure P(t,x), the stopping time T coincides a.s. with the

first exit time from the compact set [δ, t] × K̃ if t > δ. Moreover, on the event

{T > r}, we have T = T ◦ θ̄r + r, since T is a terminal time for X (as is z). We

also have XT = XT ◦ θr on {T > r}. Since u is parabolic, we can now write

u(t+ s, x) = P(t+s,x)(u(XT ), z > T )

≥ P(t+s,x)

(
u(XT ), z > T > s− r,Xs−r = (t+ r, y)

)
= P(t+s,x)

(
P

[
u(XT ◦ θ̄s−r), z ◦ θ̄s−r > T ◦ θ̄s−r | F s−r

]
,

T > s− r,Xs−r = (t+ r, y)

)
= P(t+s,x)

(
PXs−r

[
u(XT ), z > T

]
, T > s− r,Xs−r = (t+ r, y)

)
= P(t+s,x)(T > s− r,Xs−r = y)P(t+r,y)(u(XT ), z > T )

= Px(σK̃ > s− r,Xs−r = y)u(t+ r, y),

where we have used the fact that X cannot have left K̃ by time s if T > s, and

conversely. Since u is arbitrary, this concludes the proof.

Example 4.4. The parabolic Harnack inequality generally fails for Markov

chains on an uncountable state space. For one, it is easy to see that the previous

proof fails, since in general Px(Xs = y) = 0. Two, Markov chains in uncountable

state spaces do not satisfy Hypothesis (L). By a theorem of Walsh and Winkler

(1981), this hypothesis is equivalent to the condition that the state space is the
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union of at most a countable number of sets B with the property that Px(σB >

0) = 1 for all x ∈ B. If X is a Markov chain, every singleton set B = {x} has

this property.

4.3 Conditioned Processes and the Martin

Boundary

In this section, we examine the connections between Doob’s conditioning of pro-

cesses to hit particular boundary points and the standard quasistationary pro-

cedure of conditioning processes not to hit certain parts of the state space. As

explained in the introduction, all such problems can be reduced to conditioning

X so as to have an infinite lifetime.

For reasons best left to practitioners, it is interesting to define, if possible, a

law Qν on the canonical path space Ω of X with the property

Qν(dω)|Ft = lim
r→∞

Pν(dω | ζ > r)|Ft .(4.1)

As we shall see, under such a law, if it exists, the coordinate process X is again

Markovian. This problem is trivial if Pν(ζ =∞) > 0, so we will assume through-

out the chapter that Pν(ζ =∞) = 0 for all initial distributions ν on E.

For the record, we note that if h(x) = Px(ζ = ∞) > 0 on E, the law Qx

is simply Phx, the law of the h-transform associated with the invariant function

h. There is no reason to expect X to be, under Qν defined by (4.1), a time

homogeneous Markov process, but as we shall see, this happens frequently.

We now return to a consideration of (4.1). The measure Pν(dω | ζ > r) is

obviously absolutely continuous with respect to Pν(dω). When restricted to the

σ-algebra Ft, it is easy to compute the corresponding Radon-Nikodym derivative.

The Markov property gives

Pν(dω | ζ > r)|Ft =
PXt(ω)(ζ > r − t)
Pν(ζ > r)

· Pν(dω)|Ft , t > 0.
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A study of the limit (4.1) therefore corresponds to a study, as s → −∞, of the

functions

hs(t, x) =
Px(ζ > −s+ t)

Pν(ζ > −s)
, x ∈ E, s < t < 0.

This was already pointed out by Jacka and Roberts (1995), who showed that

the pointwise convergence of hs(t, x), as s→ −∞, is both necessary and sufficient

for vague convergence of Pν(dω | ζ > r) to Qν(dω), provided X is a Markov chain

on a countable state space, or a process with regular conditional probabilities

(Jacka and Roberts (1997)). We shall derive conditions which ensure this conver-

gence. These are related to some conditions of Kesten (1995) in countable time

and space, but the methods of proof are quite different here, and applicable to

general state spaces.

From now on, unless otherwise specified, the variables s and t will range over

negative real values only. Each function hs(x) is parabolic (indeed, invariant for

X) on (s,∞) × E. It is reasonable to expect that the limit should be parabolic

in R × E, and a fortiori in (−∞, 0] × E, hence representable by a probability

measure on ∂E. Once this measure is identified, we shall have a corresponding

law Qν satisfying (4.1). As far as possible, this programme will be implemented.

We begin by identifying the location of the Martin representing measure for

hs. This requires the function hs to be spacetime excessive in all of (−∞, 0)×E.

Accordingly, we shall extend it by setting

hs(t, x) = 1/Pν(ζ > −s) for (t, x) ∈ (−∞, s)× E.

The extended function is continuous, since limt↑0 Px(ζ > t) = 1 for all x ∈

E. Using the fact that any constant spacetime function is excessive for X on

(−∞, 0) × E, it is straightforward to check that the extended function hs is

excessive on (−∞, 0) × E. If A1 = 0, then the function hs is parabolic on all of

(−∞, 0)× E. From now on, hs is assumed to be defined everywhere.

Lemma 4.5. For every s < 0, there exists a probability measure µs on F such
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that

hs(t, x) =

∫
K

(
(t, x); y

)
µs(dy);

This measure is supported by the set F s of those points y = limn→∞(sn, yn) sat-

isfying lim supn→∞ sn ≤ s.

Proof. Since 〈ν, hs(0, ·)〉 = 1, the integral representation presents no problems.

By the results of Chapter 2, we know that the representing measure satisfies

P
hs
x (Xζ− ∈ A) =

∫
A

K(x, y)µs(dy), A ⊂ F.

We shall show that the left hand side is zero if A ⊂ F\F s, for any x ∈ (−∞, 0]×E.

The fact that K((t, x); ·) is strictly positive on (−∞, t)×E then gives the result.

By the definition of hs, for any r > 0

P
h−r
x (z > r) = h−r(t, x)−1

Px(h−r(t− r,Xr), ζ > r)

= Px(PXr(ζ > t), ζ > r)/Px(ζ > t+ r)

= 1.

Thus regardless of the initial state x ∈ (−∞, 0]×E, the process has, under Ph−rx ,

a lifetime which is longer than r. In particular, Xζ− must belong to F−r, and the

proof is complete.

The previous result tells us that any weak limit point µ of the family of

measures (µs) has support in F−∞ = ∩s<0F s. Correspondingly, the spacetime

excessive function h represented by µ is a limit point of (hs).

Lemma 4.6. The family of functions (hs) is compact: every subfamily contains

a subsequence such that

lim
n→∞

hsn(x) = h(x) on (−∞, 0]× E.

The function h is an excessive function (possibly zero) with a representing measure

µ supported in F−∞ = ∩sF s, and the convergence occurs boundedly on compact

subsets of (−∞, 0]× E.
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Proof. Suppose first that D is a compact subset of (−∞, 0)×E. Without loss of

generality, we shall assume that D = [a, b]×G, where ν(G) > 0. By the Parabolic

Harnack Inequality, since (t, x) 7→ pt(x, y) is parabolic in (0,∞)×E, there exists,

if s < δ < 0, a constant C such that

sup
x∈D

K(x, (s, y)) = sup
(t,x)∈[a,b]×G

1(−∞,t)(s)pt−s(x, y)∫
ν(dw)p−s(w, y)

≤ C · inf
z∈G

p−s(z, y)∫
ν(dw)p−s(w, y)

≤
(
C/ν(G)

)∫
G
ν(dz)p−s(z, y)∫
ν(dw)p−s(w, y)

≤ C/ν(G).

Thus the map y 7→ K(x, y) is continuous, and uniformly bounded on F s for

s < δ < 0 and x ∈ D. Now F is compact, so the probability measures (µs) have

a weak limit point µ, i.e. µsn ⇒ µ. Thus if x = (t, x) with t < 0,

lim
n→∞

hsn(x) = lim
n→∞

∫
K(x, y)µsn(dy)

=

∫
K(x, y)µ(dy)

= h(x),

and the convergence is uniformly bounded on D. It remains only to show that

limn→∞ hsn(0, x) = h(0, x). Since t 7→ hs(t, x) is decreasing for each s, the same

is true of t 7→ h(t, x) on (−∞, 0). Then the limit h(0, x) := limt→0 h(t, x) exists,

and clearly h(0, x) ≥ lim sn→−∞hsn(0, x). On the other hand, the function

g(t, x) = lim sn→−∞hsn(t, x), (t, x) ∈ (−∞, 0]× E,

satisfies P rg ≤ g and it is bounded below by the excessive function g̃ = limr→0 P rg

on E; we now have

h(0, x) = lim
p→∞

p(V ph)(0, x) = lim
p→∞

p(V pg)(0, x)

= g(0, x) = lim
sn→−∞

hsn(0, x),

since h and g agree η-almost everywhere.
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Importantly, it is possible for the limit function (which we as yet know only

to be excessive) to be identically zero. Indeed, whereas each function hs satisfies

〈hs(0, ·), ν〉 = 1, Fatou’s lemma shows only that 〈h(0, ·), ν〉 ≤ 1.

If ν is compactly supported, then we must have 〈h(0, ·), ν〉 = 1, by bounded

convergence; it follows that h is nonzero. However, suppose that ν is a quasista-

tionary distribution for X (or more generally, it satisfies ν ≥ Cµ where C > 0

and µ is a quasistationary distribution). Thus there exists λ ≥ Λ1 such that

Pν(ζ > t) = eλt; then

hs(t, x) = eλsPx(ζ > −s+ t),

and this tends to zero as s → −∞ whenever X is λ-transient (see Chapter 3).

Thus h(t, x) = 0 in this case, and indeed also when X is λ-null recurrent, by

the same argument. As a direct consequence, the conditioning procedure given

by (4.1) fails to give a well-defined process. The only case when the limit h(t, x)

is nonzero above is when X is λ-positive recurrent, and in that case the initial

distribution does not usually matter.

From now on, we shall always assume that ν is compactly supported (and

possibly a point mass εx), so that any limit h automatically satisfies 〈h(0, ·), ν〉 =

1, and is therefore nonzero, and in fact strictly positive by Assumption II.

4.4 Closedness of Parabolic Functions

The next step consists of proving that any limit h given by Lemma 4.6 is in

fact parabolic in (−∞, 0] × E. This is true for diffusions, where the parabolic

Harnack inequality implies that any family of parabolic functions has a convergent

subsequence to another parabolic function, see Ancona (1990) or Doob (1984).

Moreover, the convergence is then uniform on compact subsets of (−∞, 0) × E.

For Markov chains in general, this result is not so clear. Indeed, the parabolic

functions in (a, b]× E are the positive solutions to the equation

u(t, x) = u(b, x) +

∫ t

0

∑
y∈E

q(x, y)u(b− s, y)ds.(4.2)
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If hs(t, x) solves (4.2), the same holds for h if and only if one may interchange

limits and integrals on the right. A simple condition which guarantees this is that,

for each x ∈ E, the measure {y} 7→ qxy be supported by only a finite number of

points y. This means probabilistically that there is at most a finite number of

destinations for each jump of X.

Assumption III: For each compact set K ⊂ E, there exists another compact

set K ′ ⊂ E such that

Px(XσK ∈ K ′, ζ > σK) = 1, x ∈ K,

where σK = inf{t > 0 : Xt /∈ K} is the first exit time from K.

As remarked above, this assumption holds for Markov chains with bounded

jumps, for we can take

K ′ = {y : qxy 6= 0, x ∈ K}.

The assumption also holds for diffusion processes, for we can take K ′ = K

on account of the continuity of the sample paths. Note that the jump to the

cemetery state which occurs at the end of the life of the process is allowed to be

arbitrarily large.

Proposition 4.7. Suppose that Assumption III holds. If (hn) is a sequence of

parabolic functions which converges boundedly on compacts to a function h, then

h is itself parabolic.

Proof. Let D denote a compact subset of (−∞, 0]× E, and put σ = inf{r > 0 :

Xr /∈ D}. Since hn is parabolic,

hn(x) = Px(hn(Xσ), z > σ).

Moreover, our Assumption III implies that Xσ belongs to some compact set

D′ a.s. Px. Thus hn(Xσ) is uniformly bounded a.s. , and using the bounded

convergence theorem we can let n→∞ on both sides of the equation. Thus h is

itself parabolic.
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In view of Lemma 4.6, we immediately get the following corollary.

Corollary 4.8. If Assumption III holds, then every limit point of (hs) is parabolic

in (−∞, 0]× E.

Proof. For each a < 0, the function hs is parabolic in (a, 0)×E whenever s < a.

By Lemma 4.6 and the previous proposition (which we apply to the process X,

killed when leaving (a, 0) × E), any limit point of (hs) must be parabolic in

(a, 0)× E, and hence in (−∞, 0)× E since a is arbitrary.

It is worth pointing out that Assumption III implies, via the above corol-

lary, the existence of at least one non-trivial minimal parabolic boundary point

belonging to F−∞. This is because any non-trivial limit function h may be rep-

resented by Choquet’s theorem as a measure on the spacetime harmonic minimal

functions, and we saw that this measure charges only F−∞.

There exists a way of dropping the bounded jump condition and still keep the

conclusion of Corollary 4.8 intact. We assume the existence of a spacetime ex-

cessive function g(t, x) such that g(t, x) ≥ hs(t, x) for all s. Since g(Xσ(K)) is by

definition integrable for each compact K, the bound hs(Xσ(K)) ≤ g(Xσ(K)) and

Lebesgue’s dominated convergence theorem can be used instead of the bounded

convergence theorem in Proposition 4.7. This replacement condition seems how-

ever much more difficult to check, and we shall not delve any further into the

existence of such a function g.

4.5 Characterization of Limit Functions

It was shown in the previous sections that, under suitable technical conditions,

there exist nonzero parabolic functions h(t, x) in (−∞, 0]× E such that

lim
sn→−∞

Px(ζ > −sn + t)

Pν(ζ > −sn)
= h(t, x), (t, x) ∈ (−∞, 0]× E.(4.3)

This result would be much more useful if the subsequential limit could be

replaced by a full limit, that is lims→−∞ hs(t, x) = h(t, x). In that case, one could
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deduce as in Jacka and Roberts (1995) that h(t, x) = eλtg(x) for some constant

λ ≤ 0.

Indeed, it suffices to note that, for t < 0,

hs+t(0, x) = hs(t, x)Pν(ζ > −s | ζ > −s+ t),(4.4)

so that writing

Lν(t) = lim
s→−∞

Pν(ζ > −s | ζ > −s+ t),

which exists since the other two terms in (4.4) have a limit as s→∞, one gets

h(0, x) = h(t, x)Lν(t),

and therefore the decreasing function Lν satisfies Lν(a + b) = Lν(a)Lν(b), and

hence Lν(t) = ae−λt, λ ≤ 0.

Returning to the case at hand, since the subsequential limit function h of (4.3)

is represented by a measure concentrated on the minimal part of F−∞ = ∩sF s,

the reasoning above suggests that we should look for conditions under which

K

(
(t, x); y

)
= eλtg(x), y ∈ F−∞ minimal.(4.5)

We shall begin with a definition. Recall that we have assumed that ζ <∞ a.s.

Definition 4.9. A subset N ⊂ E is called a cemetery neighbourhood if

lim
t→ζ

1N(Xt) = 1 a.s.

for all starting points x ∈ E.

There always exists at least one cemetery neighbourhood, namelyN = E. The

definition states that the process spends the last segment of its lifetime in N .

Example 4.10. Suppose X is a Brownian motion killed upon leaving the

unit ball E = {x : ‖x‖2 < 1}. On account of the continuity of sample paths, any

annulus N = {x : ε < ‖x‖2 < 1} is a cemetery neighbourhood.

Example 4.11. Let B be a Brownian motion on E = {x : ‖x‖2 < 1} as in the

previous example, and let c(x) > 0 be a bounded function on E. Define a Markov
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process X by killing B according to the additive functional At =
∫ t

0
c(Bs)ds. The

semigroup of X is given by the formula

Px(f(Xt), ζ > t) = Px(f(Bt)e
−
∫ t
0 c(Bs)ds, T∂E > t), x ∈ E,

here T∂E = inf{t > 0 : |Bt| = 1}. If U is any nonempty open subset of E,

the probability that Xt belongs to U at its moment of death is strictly positive.

Hence the only cemetery neighbourhood is N = E.

Example 4.12. Let Y be a Markov chain on E = {0, 1, 2, 3, . . . } and suppose

that Y gets absorbed in 0 in a finite time. Define X as the Markov chain on

E = {1, 2, 3, . . . } which is constructed by killing Y at the first hitting time of

state 0. A cemetery neighbourhood is given by the set of states from which the

process Y can directly jump to zero, namely

N = {y > 0 : qy0 > 0};

here (qij) is the q-matrix of Y . The set we defined is clearly the smallest possible

cemetery neighbourhood.

Example 4.13. Let X be an explosive pure birth process on the countable

set E = {1, 2, 3, . . . }. The lifetime of X coincides with the explosion time, that

is

ζ = inf{t > 0 : |Xt| =∞}.

A typical cemetery neighbourhood is given by N = {n, n + 1, n + 2, . . . }. There

exists no ‘smallest’ such set.

The importance of cemetery neighbourhoods for our study stems from the

following fact. We denote by N the closure, in the Martin topology, of the

cylinder set (−∞, 0]×N .

Lemma 4.14. If h is a limit point of (hs), then a representing measure for h is

concentrated on N ∩ F−∞.

Proof. Let µ be a representing probability measure for h; there exists a sequence

(sn) such that µsn ⇒ µ, where µs is a representing measure for hs. Consider the
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event {Xz− ∈ N, z <∞}; a rephrasing of Definition 4.9 in terms of the spacetime

process gives

Px(Xz− ∈ N, z <∞) = 1, x ∈ (−∞, 0]× E.

From the proof of Lemma 4.5, we known that P
hs
x (z ≥ −s) = 1; we also have

P
hs
x (z <∞) = 1, since the constancy of hs on (−∞, s)× E implies that

lim
u→∞

P
hs
x (z > u) = lim

u→∞
Px(hs(t− u,Xu), ζ > u)/hs(t, x)

= lim
u→∞

cPx(ζ > u)

= 0,

where c−1 = hs(t, x)Pν(ζ > −s). Hence for 0 < r < −s we have

P
hs
x (Xz− ∈ N, z <∞) = P

hs
x (Xz− ∈ N, r < z <∞)

= Px(hs(Xr), Xz− ∈ N, r < z <∞)/hs(x)

= Px(hs(Xr), z > r)/hs(x)

= 1.

But by (2.7) of Chapter 2, this means that the representing measure µs is con-

centrated on N (in fact N ∩ F s). Indeed, if A is any set such that A ∩N = ∅,

0 = Px(Xz− ∈ A) =

∫
A

K(x, y)µs(dy),

and since x was arbitrary, this follows as in the proof of Lemma 4.5. Now by

weak convergence, since N is closed,

µ(N) ≥ lim sn→∞µsn(N) = 1,

and this completes the proof.

The last result means that, in a study of h we can restrict attention to those

minimal parabolic functions K(·, y) arising out of sequences y = limn→∞(sn, yn)

such that yn ∈ N for all n.

We now introduce the assumption which will allow us to prove that (4.5)

holds.
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Assumption IV: There exists a cemetery neighbourhood N with the following

property: for each r > 0, there exist C(r), T (x) > 0 such that

pt(x, y) ≤ C(r)pt+r(x, z), t > T (x), x ∈ E, y, z ∈ N.

Bearing in mind that (t, x) 7→ pt(x, y) is parabolic in (0,∞) × E, Assump-

tion IV is a kind of “reverse” Harnack inequality. More will be said about this

later.

The following result is an adaptation in our context of a result due to Koranyi

and Taylor (1985). See Ancona (1990) and also Lyons and Sullivan (1984).

Proposition 4.15. Suppose that Assumption IV holds. Every minimal parabolic

function K(·, y) with y ∈ N ∩ F−∞ is of the form

K

(
(t, x); y

)
= eλtg(x),

where g is a minimal positive solution to the equation Ag = λg in E.

Proof. By the assumption, if s < t ≤ 0 < r, s < −T (x),

K

(
(t− r, x); (s, y)

)
=

pt−r−s(x, y)∫
ν(dx)p−s(x, y)

≤ C(r) · pt−s(x, y)∫
ν(dx)p−s(x, y)

= C(r)K

(
(t, x); (s, y)

)
.

Suppose now that w(x) = limn→∞K(x, yn) is a minimal parabolic function cor-

responding to a sequence (sn, yn) satisfying limn sn = −∞ and yn ∈ N for all n.

For any r > 0, the function wr(t, x) = w(t−r, x) is also parabolic in (−∞, 0]×E,

and the above computation shows that wr(t, x) = w(t − r, x) ≤ C(r)w(t, x).

By minimality of w (see the definition in Chapter 2, Section 2.3), this means

there exists a constant L(r) such that w(t, x) = L(r)w(t− r, x). Now L satisfies

L(a + b) = L(a)L(b) and L(0) = 1. Moreover, L is continuous since t 7→ w(t, x)

is. Hence L(t) = eλt for some constant λ ∈ R, and then w(t, x) = eλtw(0, x).

Finally, since w is parabolic, it satisfies the equation

∂

∂t
w(t, x) = Aw(t, x) in (−∞, 0]× E,
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and hence the function g(x) = w(0, g) is an eigenfunction of A with eigenvalue λ.

For the minimality, put g = k + l where both k and l are positive eigenfunctions

with eigenvalue λ. The functions k′(t, x) = eλtk(x) and l′(t, x) = eλtl(x) are

both parabolic, and dominated by w; hence they are constant multiples of w, and

multiplying by e−λt shows that k and l are both multiples of g.

The above result does not require the full force of Assumption IV, but merely

that pt(x, y) ≤ C(r) · pt+r(x, y) for all y ∈ N . We now give some examples of

processes satisfying Assumption IV.

Example 4.16. Let X be a uniformly elliptic diffusion (bounded coefficients)

on a bounded open set with regular boundary; the transition density pt(x, y)

(with respect to Lebesgue measure) is the fundamental solution of the parabolic

operator L − ∂/∂t, where L = A is the generator of X. The regularity of the

boundary ensures that limx→∂E pt(x, y) = 0. Extend L to a uniformly elliptic

operator in all of Rd. This is always possible when the coefficients of L are

sufficiently smooth; it suffices to take continuous functions ãij(x) (with ãij(x) =

ãji(x)), b̃j(x) which agree with aij(x), bj(x) in E and have the same bounds above

and below as these. Then set

L̃f(x) =
1

2

d∑
i,j=1

ãij(x)Dijf(x) +
d∑
j=1

b̃j(x)Djf(x).

Now if

p̃t(x, y) =

pt(x, y) if x, y ∈ E,

0 otherwise,

then the function (t, x) 7→ p̃t(x, y) is parabolic on (0,∞) × Rd for L̃, and the

function (t, y) 7→ p̃t(x, y) is parabolic for the adjoint L̃∗ of L̃:

L̃∗f(x) =
1

2

d∑
i,j=1

Dij(ãijf)(x)−
d∑
j=1

Dj(b̃jf)(x)

Assuming that the parabolic Harnack inequality holds for this adjoint, there then

exists a constant C such that

p̃t(x, y) ≤ C · p̃t+r(x, z), y, z ∈ E, t > δ,
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independently of x. Thus Assumption IV holds for this process.

The above example can be modified for diffusions on unbounded domains

E, provided a sufficiently small cemetery neighbourhood exists. The following

example illustrates the procedure.

Example 4.17. Let X be Brownian motion on E = (0,∞), killed upon

first hitting zero. Its generator is (1/2)d2/dx2 on C2
K((0,∞)). The set (0, 1) is a

cemetery neighbourhood, and the transition function of X is,

pt(x, y) =
√

2/πt exp

(
−x

2 + y2

2t

)
sinh(xy/t), x, y, t > 0.

Since

pt(x, y)

pt+r(x, y)
=

√
t+ r

t
· sinh(xy/t)

sinh(xy/t+ r)
,

we can take C(r) = 4, provided we take

T (x, r) = r ∨ inf

{
t > 0 :

sinh(x/t)

sinh(x/t+ r)
≤ 2

}
.

The previous example can be generalized as follows:

Example 4.18. Let X be an elliptic diffusion process in an unbounded

domain E ⊂ R
d, and suppose that the lifetime of X coincides with the first

hitting time of some compact set K ⊂ E. Any bounded open set D containing

K is a cemetery neighbourhood. We shall assume that the generator is uniformly

elliptic in some such set. If the boundary of K is sufficiently regular, and the

coefficients of L = A are sufficiently smooth, we can again argue in terms of the

adjoint of L, as in the first example, that Assumption IV must hold.

We give one further example, within the realm of Markov chains.

Example 4.19. Let X be an irreducible Markov chain on a countable state

space, and suppose that a finite cemetery neighbourhood N exists. Assumption

IV must hold, since if pt(x, y) is the density of the transition function with respect

to counting measure,

pt+r(x, y) ≥ pt(x, z)pr(z, y), x ∈ E, y, z ∈ N,
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and we can take C(r)−1 = minz,y∈N pr(z, y) > 0 by irreducibility. This argument

also shows, by taking y = z, that the conclusion of Proposition 4.15 holds as soon

as there exists a (not necessarily finite) cemetery neighbourhood N satisfying

sup
y∈N
|q(y)| < +∞.

In particular, this is always true when the q-matrix is bounded.

Alternatively, Assumption IV may be seen as follows: let ξ(dy) be an excessive

measure on E with density ξ(y) with respect to counting measure, that is

∑
x∈E

ξ(x)pt(x, y) ≤ ξ(y).

Such a measure always exists; then

p̂t(x, y) = pt(y, x)ξ(y)/ξ(x)

is the transition density of the minimal Markov chain X̂ with q-matrix q̂(x, y) =

q(y, x)ξ(y)/ξ(x). For each y ∈ E,

∂

∂t
p̂t(x, y) =

∑
z∈E

q̂(x, z)p̂t(z, y),

that is (t, x) 7→ pt(x, y) is parabolic for X̂. By the parabolic Harnack inequality

on the compact set N , p̂t(x, y) ≤ C(r)p̂t+r(z, y) for all x, z ∈ N and fixed y ∈ E.

It follows that

pt(y, x) ≤ C ′(r)pt+r(y, z), y ∈ E, x, z ∈ N,

where C ′(r) = maxx,z∈N C(r)ξ(x)/ξ(z).

We remark that the above assumption, that a finite cemetery neighbourhood

exists, also implies that the decay parameters Λ∗ and Λ1 coincide; this was shown

in Jacka and Roberts (1995), Lemma 3.3.5.

We end this section by summarizing the results of our study of (hs). In

the next section, we will describe the implications for the conditioning proce-

dure (4.1).
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Proposition 4.20. Suppose that Assumptions II, III, IV hold together with the

parabolic Harnack inequality. If ν is a compactly supported probability measure

on E, then the limit points of (hs) are all of the form

lim
rn→∞

Px(ζ > rn + t)

Pν(ζ > rn)
=

∫
eλtgλ(x)µ(dλ),

where µ is a probability measure concentrated on [Λ∗, 0] and gλ > 0 satisfies

Ptgλ = eλtgλ (and hence Agλ = λgλ) with 〈ν, gλ〉 = 1.

Proof. The integral representation comes from Lemma 4.14, Proposition 4.15 and

the results of Chapter 2, Section 2.3. The fact that µ must be concentrated on

[Λ∗, 0] is due to the fact that any limit point h of (hs) is a decreasing function

of the time variable (so that λ ≤ 0), as well as the results of Chapter 3 (which

imply λ ≥ Λ∗). For the normalization of gλ, we first have by Lemma 4.6 (see

also the discussion thereafter) and the dominated convergence theorem that 1 =

〈ν, h(0, ·)〉. Then, since t 7→ h(t, ·) is decreasing,

1 = 〈ν, h(0, ·)〉 ≤ 〈ν, h(t, ·)〉 =

∫
eλt〈ν, gλ〉µ(dλ).

Then by monotone convergence,

1 ≤
∫
〈ν, gλ〉µ(dλ),

whereas Fatou’s lemma shows that

〈ν, gλ〉 ≤ lim
n→∞
〈ν,K(0, ·; yn)〉 = 1,

where (yn) is any sequence converging to the boundary point which represents

the function eλtgλ(x). It follows that 〈ν, gλ〉 = 1 a.e. with respect to µ. Finally,

it is clear that hλ(t, x) = eλtgλ(x) is spacetime invariant, or equivalently that

z =∞ a.s. under P
hλ

. Otherwise we would have P
hλ

x (ζ <∞) > 0, and therefore

Xζ− /∈ F s on {z ≤ t−s} with positive probability. Then the representing measure

for hλ would not be concentrated on F−∞, contradicting Lemma 4.5. Now

eλtgλ(x) = P(t,x)(h
λ(Xr), z > r) = Px(e

λ(t−r)gλ(Xr), ζ > r),

and dividing by eλt gives Pr(x, gλ) = eλrgλ(x).
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For every probability measure µ on F−∞ ∩N , the invariant function (t, x) 7→∫
eλtgλ(x)µ(dλ) represents a different way of exiting the set N via F−∞. To make

the limit in Proposition 4.20 independent of the sequence rn →∞, we could show

that F−∞ ∩ N consists of a single minimal point. This will be done in the next

section, where we also return to a discussion of the conditioning procedure (4.1).

4.6 Single Exit Conditions

In this section, we use the result of Proposition 4.20 to study the conditioning

problem (4.1). We shall say that this problem has a sequential solution if any

family (rn), rn →∞, has a subsequence rn(k) such that

lim
k→∞

∫
H(ω)dPν(ω | ζ > rn(k)) =

∫
H(ω)dQν(ω)

holds for some probability law Qν on Ω and all bounded Ft measurable random

variables, t > 0. Thus we are saying that the laws Pν(dω | ζ > r) are sequentially

compact in the space of all probability measures. If the limit law Qν is indepen-

dent of the particular chosen sequence, then we will say that the problem (4.1)

has a (full) solution.

The main result of this section is the following theorem, which tells us that

the problem (4.1) has a solution if the set F−∞ ∩N consists of a single minimal

point. The remainder of this section will be a discussion of this condition, with

examples relating it to existing theories.

Theorem 4.21. Suppose that Assumptions II, III and IV hold, together with the

parabolic Harnack inequality. If ν is a probability measure with compact support

in E, and F−∞ ∩N = {z} consists of a single minimal point, with corresponding

invariant parabolic function

K(t, x; z) = eλtg(x), 〈ν, g〉 = 1,

then the conditioning problem (4.1) has a solution given by

Qν(dω) = e−λtg(Xt(ω)) · Pν(dω) on Ft, t ≥ 0.
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In particular, the coordinate process X is, under Qν, a time homogeneous Markov

process with semigroup Qt(x, dy) = e−λtPt(x, dy)g(y)/g(x) and initial distribution

g(x)ν(dx).

Some comments are in order before we start the proof.

It is possible to characterize the eigenvalue λ by the formula

λ = lim
r→∞

1

t
logPν(ζ > r) = Λ1.

Indeed, this follows from the fact that (Proposition 4.20 and bounded conver-

gence)

lim
r→∞

Pν(ζ > t+ r)

Pν(ζ > r)
= eλt,

and the formula

1

n
logPν(ζ > n) =

1

n

n−1∑
k=0

log

(
Pν(ζ > k + 1)/Pν(ζ > k)

)
;

see Jacka and Roberts (1997) or Collet et al. (1995).

We need to keep in mind that the set N is that referred to in Assumption IV.

We shall list below a number of sufficient conditions for F−∞∩N to be a singleton.

For example, it suffices that there exists a symmetrizing measure for the transition

semigroup. Of course, Λ∗-recurrence is another sufficient condition.

Even if F−∞∩N consists of more than one point, the other assumptions of the

theorem guarantee that the conditioning problem (4.1) always has a sequential

solution. This improves on existing results, notably Jacka and Roberts (1995),

who do not discuss what happens if (hs) does not converge.

In view of the spacetime picture we have been working with, it is not surprising

that the law Qν is that of an h-transform of the spacetime process X with respect

to the invariant function h(t, x) = eλtg(x). We are simply conditioning X to

hit that part of the Martin boundary which we denoted F−∞ ∩ N . In light of

this, the interplay between X and the geometry of N and E encapsulated by

Assumption IV play a major role in the conditioning problem, as was already

noted by Kesten (1995) in his discussion of Yaglom limits. One can therefore
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expect that sequential solutions are the best one can hope for in general, with

full solutions representing rather extreme cases. This may explain that, when

X is Λ-transient, most “successful” conditional limit theorems have been proved

for effectively one-dimensional processes (birth-death processes or stochastically

monotone processes are examples).

The time homogeneity of X under the law Qν , claimed in the above theorem,

is largely due to Assumption IV which implies (4.5). If F−∞ ∩ N does not

consist of a single point, a typical sequential limit law ought to give rise to a time

inhomogeneous Markov process, whose transition law will be

P (t, x; s, dy) = h(t, x)−1ps−t(x, y)h(s, y)m(dy), x, y ∈ E, s > t > 0,(4.6)

where

h(t, x) =

∫
eλtgλ(x)µ(dλ).

The infinite lifetime of the conditioned process (equivalent to the spacetime

invariance of h(t, x)) is intuitively obvious, but it should be borne in mind that the

conditioning procedure does not yield a well defined Markov process for arbitrary

initial distributions ν (see discussion after Lemma (4.6)); the integrability of g

with respect to ν is crucial. Our choice of dealing only with compactly supported

probability measures ν is dictated by the parabolic Harnack inequality, which

underlies many of our proofs.

In the proof of Theorem 4.21 below, we will actually show that any sequential

limit law Qν gives rise to a Markov process with transition function (4.6). When

µ is concentrated on a single point, the function h reduces to K(·, z) as required.

Proof of Theorem 4.21. Let H denote any bounded Ft measurable random vari-

able, t ≥ 0, and suppose that (rn) gives rise to a limit point h of (hs) as in the

previous section. Then if σK = inf{t > 0 : Xt /∈ K} denotes the first exit time

from a compact set K ⊂ E, the bounded convergence theorem gives

lim
n→∞

Pν(H, σK > t | ζ > rn) = lim
n→∞

Pν

(
H, σK > t,

PXt(ζ > rn − t)
Pν(ζ > rn)

)
= Pν(H, σK > t, h(−t,Xt)).
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We now dispense with the set {σK > t} above. Taking H = 1 and remembering

that 〈gλ, ν〉 = 1 gives

lim
n→∞

Pν(σK ≤ t | ζ > rn) = 1− lim
n→∞

Pν(σK > t | ζ > rn)

= 1−
∫
Pν(σK > t, e−λtgλ(Xt))µ(dλ)

=

∫
µ(dλ)ν(dx)

(
gλ(x)− Px(e−λtgλ(Xt), σK > t)

)
=

∫
µ(dλ)ν(dx)Px(e

−λtgλ(Xt), ζ > t, σK ≤ t)

= Qν(σK ≤ t),

where we have used the λ-invariance of gλ. Now

lim n→∞
∣∣Pν(H | ζ > rn)−Qν(H)

∣∣
≤ lim n→∞ |Pν(H, σK > t | ζ > rn)−Qν(H, σK > t)|

+ lim n→∞2 ‖H‖
(
Pν(σK ≤ t | ζ > rn) +Qν(σK ≤ t)

)
= 4 ‖H‖Qν(σK ≤ t),

and, since σK ↑ ζ as K ↑ E and ζ =∞ a.s. under Qν , the right hand side can be

made arbitrarily small by choosing K arbitrarily large, the result follows.

We now present some examples illustrating the scope of the ‘single exit’ as-

sumption F−∞∩N = {z}. Throughout, we will suppose that the other conditions

of Theorem 4.21 are met.

Suppose first that the decay parameter Λ∗ of the Markov process X is zero.

Since the interesting minimal points are represented by eigenfunctions of A with

eigenvalue λ ∈ [Λ∗, 0] = {0} here, the points of F−∞ correspond to the solutions

g of the equation Ag = 0 in E which also satisfy Ptg = g. This is illustrated in

the next example.

Example 4.22. Let X denote the one dimensional Brownian motion on

E = (0,∞), killed upon first hitting zero. We saw earlier that this process

satisfies all the other assumptions of Theorem 4.21. Since its generator is given

by A = (1/2)d2/dx2, the solutions to Ag = 0 are given by g(x) = a + bx, for
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some positive constants a and b. If b = 0, g is a multiple of the excessive function

1, which is not invariant for X since the process has finite lifetime under the

h-transformed law P
1
x = Px. The Martin compactification of X is well known to

be [0,+∞], and the excessive function 1 corresponds here to the point 0. If a = 0,

then g is a multiple of the excessive function x. Now this function is invariant,

since the corresponding h-transform (with h(x) = x) is a three dimensional Bessel

process with generator

Ahf(x) = h(x)−1A(hf)(x) =
1

2

d2

dx2
f(x) +

1

x

d

dx
f(x),

and it is well known that this process is nonexplosive. Thus we see that F−∞ ∩

N consists of only the function g(x) = x/
∫
xν(dx). In terms of the Martin

boundary of X, the excessive function x corresponds to the point +∞. Clearly,

the assumption Λ∗ = 0 always implies that we can identify F−∞ with a subset of

the Martin boundary of the original process X, as occurs here. In particular, the

conditioned process must converge to a point on the Martin boundary of X; here

it is the point +∞. The interpretation of the three dimensional Bessel process as

a conditioned Brownian motion has a long history. See papers by McKean (1963),

Williams (1974), Pitman (1975) and references therein. We end this example with

some further remarks on the parabolic Martin boundary, taken from Doob (1984,

p. 375). For every τ < 0, set

K0(t, x; τ) =


x√

2π(t−τ)3
exp
(
− x2

2(t−τ)

)
if t > τ,

0 if t ≤ τ.

For each γ ≤ 0, set

K1(t, x; γ) =

sinh(−γx) exp
(
γ2t
2

)
if γ < 0,

x if γ = 0.

Without changing notation, we will assume that the functions K0 and K1 are

properly normalized, that is 〈ν,K0(0, ·; τ)〉 = 〈ν,K1(0, ·; γ)〉 = 1. The Martin

sequences are as follows: if yn → (τ, 0), then limnK(·, yn) = K0(·; τ); if sn → −∞
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and yn/sn → γ ≤ 0, then limnK(·, yn) = K1(·, γ), and if either yn → +∞ with

yn/(1+ |sn|)→ +∞ or else sn → 0 with no restriction on yn, then limnK(·, yn) =

0. Every positive parabolic function u with lim s→0u(s, x) < +∞ then has the

Martin representation

u(t, x) =

∫
K0(t, x; τ)µ0(dτ) +

∫
K1(t, x; γ)µ1(dγ).

For the function which interests us, namely hs(t, x), the quickest way to get this

representation explicitly is to use the Bachelier-Levy formula

Px(ζ > r) =

∫ ∞
r

x√
2πu3

exp
(
−x2/2u

)
du,

and make the change of variable τ = r − u. One then finds that

Px(ζ > t− s)
Pν(ζ > −s)

=

∫ s

−∞

K0(t, x; τ)

〈ν,K0(0, ·; τ)〉

(∫
ν(dz)

z√
−2πτ 3

exp(z2/2τ)dτ

)
=

∫
K

(
t, x; (τ, 0)

)
1(−∞,s](τ)µs(dτ),

and a representing probability measure µs is concentrated on F s as predicted. The

set F−∞ here consists of the half-line γ ≤ 0, where each point γ is identified with

the function K1(·, γ). A cemetery neighbourhood is given by the set (0, 1) ⊂ E.

Now the points belonging to F−∞ ∩ N must be arrived at through sequences

(sn, yn) such that yn < 1 for all n. In view of the characterization of Martin

sequences above, every such sequence must give the function K1(t, x; 0) = x (up

to normalization).

Example 4.23. Suppose that X is Λ∗-recurrent. As described in Chap-

ter 3, there exists a unique function g > 0 on E such that Ptg = eλtg holds

for some λ ≤ 0. This function is associated with the eigenvalue λ = Λ∗.

The assumptions of Theorem 4.21 are satisfied for both Markov chains on fi-

nite state space and uniformly elliptic diffusions on bounded domains, see Chap-

ter 3. In those cases, the set F−∞ consists of a single minimal boundary point

z, which satisfies K(t, x; z) = eΛ∗tg(x). This may be seen as follows. For each

fixed y ∈ E, the Λ∗-recurrence implies that we can recover g by the formula
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g(x) = limt→∞ e
−Λ∗tpt(x, y); see Chapter 3. Now

lim
s→−∞

K(t, x; (s, y)) = lim
s→−∞

eΛ∗spt−s(x, y)

eΛ∗s
∫
ν(dz)p−s(z, y)

= eΛ∗tg(x)/〈ν, g〉,

which means that all sequences (sn, y) with sn → −∞ tend to z in the Martin

topology. On its own, this is not enough to show that F−∞ = {z}, for we

haven’t considered the sequences (sn, yn) where yn may vary. However, according

to Proposition 4.24 below, this is not necessary, since both classes of processes

considered here satisfy Assumption IV with N = E.

Proposition 4.24. If Assumption IV holds, then the following three statements

are equivalent:

(i) For some y ∈ N ,

lim s→−∞K
(
x, (s, y)

)
> 0

holds for all x in a set of positive η-measure,

(ii) The set F−∞ ∩N contains a single nontrivial, minimal parabolic boundary

point z,

(iii) For every sequence yn = (sn, yn) such that sn → −∞ and yn ∈ N for all n,

lim
n→∞

K(x, yn) = K(x, z) = eλtg(x).

Proof. By Assumption IV, if ε > 0 is fixed, we have the inequality

K

(
(t, x); (s, y)

)
=

pt−s(x, y)∫
ν(dw)p−s(w, y)

≤ C(ε)−2 pt−s+ε(x, z)∫
ν(dw)p−s−ε(w, z)

= C(ε)−2K

(
(t+ 2ε, x); (s+ ε, z)

)
,

for all y, z ∈ N and t− s,−s > T (x, ν). Now let (sn + ε, zn)→ z, where z is any

nonzero minimal parabolic boundary point belonging to F−∞ ∩N . The function

k(x) = lim s→−∞K(x, (s, y)) satisfies P rk ≤ k by Fatou’s lemma. It is thus
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bounded below by the excessive function k̃ = limr→0 P rk, from which it differs

at most on a set of η-measure zero; the minimality of z together with the bound

k(t − 2ε, x) ≤ C(ε)−2K((t, x), z) implies that k̃(t − 2ε, x) is a constant multiple

of K((t, x), z). Since k̃ is necessarily parabolic, we have k̃(t, x) = ecεk(t − 2ε, x)

for some constant c, when k̃ is also a multiple of K(·, z). If z′ is another minimal

parabolic boundary point, the same argument shows that K(·, z′) is a constant

multiple of k̃, and hence of K(·, z). Thus there exists at most one mimimal point

in F−∞ ∩N , and hence all sequences converge to it. Conversely, if there are two

distinct minimal points z, z′ ∈ F−∞ ∩N , then k̃(·) must be proportional to both

K(·, z) and K(·, z′), and hence identically zero.

If X is Brownian motion and E is the unit ball in Rd, then this process is pos-

itive Λ∗-recurrent, as explained in the last chapter. The parameter Λ∗ = Λ1 is

the principal eigenvalue of 1
2
∆ with Dirichlet conditions on ∂E, and therefore is

nonzero here. Unlike the earlier example, the parabolic Martin boundary F−∞

is not identifiable with the ordinary Martin boundary of X, which is well known

to be ∂E here. In particular, the conditioned process does not converge to any

point on ∂E (as is also to be expected by the rotational symmetry of X).

Example 4.25. Let X be a uniformly elliptic diffusion on an open set E ⊂

R
d, not necessarily bounded. Assume that the generator is in divergence form,

Lf(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj

)
(x), f ∈ C2(E).

Bass and Burdzy (1992) have shown that, if the set E is given locally by the

graph of an Lp function with p > d − 1, then the following parabolic boundary

Harnack principle holds: for every u > 0, there exists C(u) such that

pa(y, x)

pa(z, x)
≥ C(u) · pb(y, v)

pb(z, v)
, a, b ≥ u,(4.7)

for all v, x, y, z ∈ E. See their paper and references therein for a precise definition

of Lp domains, and for other conditions ensuring the validity of (4.7).

Suppose now that a slightly weaker form of (4.7) holds, namely for v, x merely

belonging to N . Integrating both sides of (4.7) over y ∈ E with respect to the
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measure
∫
ν(dw)pr(w, ·)m(·) and inverting gives

pa(z, x)∫
ν(dw)pa+r(w, x)

≤ C(u) · pb(z, v)∫
ν(dw)pb+r(w, v)

, a, b ≥ u, x, v ∈ N, z ∈ E.

Changing variables according to t = −r, −s′ = a + r, −s′ = b + r we find

K
(
(t, z); (s′, x)

)
≤ C(u)K

(
(t, z); (s, v)

)
, and this is enough to guarantee that

F−∞∩N consists of a single minimal boundary point. Indeed, let (sn, zn) converge

to some minimal z ∈ F−∞ ∩N (which exists by Assumption III), and let (s′n, yn)

converge to any parabolic point y in F−∞ with the correct normalization. The

inequality ensures that

eλ
′tg′(z) = K((t, z), y) ≤ C(u) ·K((t, z), z) = eλtg(z),

and the minimality of z ensures that these two parabolic functions are propor-

tional. Thus there exists a constant c such that eλ
′tg′(z) = c · eλtg(z). Integrating

both sides with respect to ν(dz) gives c = 1, and hence y = z. Since y was

arbitrary, the set F−∞ must consist of a single minimal point with the properties

required by Theorem 4.21.

In our next example, we return to Markov chains, and expand on Proposi-

tion 4.24.

Example 4.26. Suppose that X is a Markov chain on a countable state

space E, whose transition function is symmetric with respect to the measure m;

here m is the measure used in Assumption II. The symmetry of X means that

pt(x, y) = pt(y, x) for the transition density associated with m by Assumption II.

In dealing with Markov chains, it is usual to work with respect to counting

measure, so that m has the representation m(A) =
∑

x∈Am(x). Let us denote by

pxy(t) the transition density of Pt(x, dy) with respect to counting measure. We

then have the formula pt(x, y) = pxy(t)/m(y), so that the symmetry requirement

becomes the familiar formula

m(x)pxy(t) = m(y)pyx(t), x, y ∈ E.
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Kendall (1959) showed the existence, for each x, y ∈ E, of finite signed mea-

sures µ(x, y; dλ) on (−∞, 0] such that

pt(x, y) =

∫ 0

−∞
eλtµ(x, y, dλ).(4.8)

It is also known that the measure µ(x, x; dλ) is positive for x ∈ E, and that, for

each y ∈ E, the signed measure µ(x, y; dλ) is absolutely continuous with respect

to the measure µ(y, y; dλ), independently of x ∈ E. Let us now fix once and for

all a state y ∈ N , and denote the bounded measure µ(y, y; dλ) simply by µ(dλ).

Since ∫ ∞
0

eεtpt(y, y)dt =

∫ 0

−∞

(∫ ∞
0

e(λ+ε)tdt

)
µ(dλ),

it is obvious that µ is supported in the set (−∞,Λ∗]. Then we can write

K

(
(t, y); (s, y)

)
=

∫ Λ∗
−∞ e

λ(t−s)µ(dλ)∫ Λ∗
−∞ e

−λsµ(dλ)
,(4.9)

if the normalizing measure ν is taken as the point mass at y.

This representation is all we need to prove that the hypotheses of Proposi-

tion 4.24 hold.

Theorem 4.27. Suppose that the transition function pt(x, y) is symmetric. Then

the set F−∞ ∩N is a singleton.

Proof. Consider the probability measures

γs(dλ) =
e−λsµ(dλ)∫ Λ∗
−∞ e

−θsµ(dθ)
.

Using the bound
∫ Λ∗
−∞ e

−λsµ(dλ) ≥ e−(Λ∗−ε)sµ((Λ∗ − ε,Λ∗]), it follows that

γs((−∞,Λ∗ − ε]) ≤ µ((Λ∗ − ε,Λ∗])−1e(Λ∗−ε)s
∫ Λ∗−ε

−∞
e−λsµ(dλ),

and this tends to zero as s→ −∞. Consequently, the measures γs are tight, and

converge weakly to the point mass at Λ∗. If the normalizing measure is the point

mass at y, it follows that

lim
s→−∞

K

(
(t, y); (s, y)

)
= lim

s→−∞

∫
eλtγs(dλ)

= eΛ∗t > 0.
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Since the set (−∞, 0) × {y} has positive η-measure, it follows from Proposi-

tion 4.24 that K(·, yn)→ K(·, z) as yn → F−∞ while remaining in N . This con-

vergence is clearly unaffected if we integrate both sides with respect to some com-

pactly (finitely) supported measure ν, that is we shall have 〈ν,K((0, ·), yn)〉 →

〈ν,K((0, ·), z)〉. Finally, we can remove the assumption that K((0, y), y) = 1, by

writing

lim
n→∞

K(x, yn)

〈ν,K(0, ·; yn)〉
= lim

n→∞

K(x, yn)/K(0, y; yn)

〈ν,K(0, ·; yn)〉/K(0, y; yn)

=
K(x, z)

〈ν,K(0, ·; z)〉
.

Applying Proposition 4.24 gives the result.

Example 4.28. Let 0 < d < +∞, and denote by E the set of strictly positive

integer-valued bounded measures on the set C = {1, . . . , d}. Thus a typical

measure in E assigns an integer µ({k}), which we shall interpret as counting the

number of individuals in the k-th group or colony. The set E is a metric space

under total variation distance, that is dist(µ, ν) =
∑

k∈C |µ({k})− ν({k})|, and

is clearly denumerable.

An open migration process on E is a Markov chain Xt with the following

dynamics (see Kelly (1979)): from any state µ ∈ E, the process may jump to

neighbouring states µ + εk (interpreted as a birth in the k-th colony), µ − εj if

µ({j}) > 0 (interpreted as a death in the j-th colony), or µ− εj + εk (interpreted

as the movement of some individual from colony j to colony k). Clearly such a

Markov chain has compactly supported jumps. The lifetime coincides with the

first time Xt exits E:

ζ = inf{t > 0 : Xt(C) = 0 or Xt(C) = +∞}.
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The following q-matrix specifies the above behaviour:

q(µ, µ+ εk) = αkψk(µ({k})),

q(µ, µ− εj) = βjφj(µ({j})),

q(µ, µ− εj + εk) = γjkφj(µ({j})),

q(µ, µ) = −
∑
j,k∈C

q(µ, µ+ εk) + q(µ, µ− εj) + q(µ, µ− εj + εk).

Here (αk), (βj) and (γjk) are positive numbers and (ψk), (φj) are positive func-

tions. We shall suppose that they have been chosen so that X is irreducible, i.e.

every colony is accessible from any other, possibly via a chain of colonies, and

that the birth and death parameters allow for unbounded growth (resp. complete

death) of the total population.

Suppose now that there exist strictly positive numbers (a1, . . . , ad) satisfying

the equations

ajγjk = akγkj, ajβj = αj, j, k ∈ C.

The detailed balance equations m(µ)q(µ, ν) = m(ν)q(ν, µ) on E have a solution

(Kelly (1979))

m(µ) =
d∏
j=1

(
a
µ({j})
j

µ({j})∏
r=1

ψj(r − 1)

φj(r)

)
.

and this defines a symmetrizing measure m(dµ), provided each m(µ) is finite. We

can ensure that Pµ(Xt(C) = 0 eventually) = 1 for any initial state (population

configuration) µ, with a suitable choice of the parameters. In that case, a ceme-

tery neighbourhood is given by the set N = {εk : k ∈ C}, whose cardinality is at

most d. It follows that Assumption IV holds and according to Theorem 4.27, the

conditioning problem has a solution.

In the proof of Theorem 4.27, all that we have really used is the fact that the

function f(t) = pt(y, y) is the Laplace transform of some finite positive measure.

This is guaranteed by Bernstein’s theorem on completely monotonic functions

(see Widder (1941) whenever the function f satisfies the following conditions:

f(0+) <∞, (−1)k
dk

dtk
f(t) ≥ 0 k = 0, 1, 2, . . .
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For one-dimensional diffusions, it was shown by McKean (1956) that the rep-

resentation (4.8) is valid. Indeed, in a follow-up paper (McKean (1963)), the

conditioning problem (4.1) was shown to have a solution. For other symmetric

processes, one would use the spectral representation to get a similar result.

Kijima (1993) showed that a representation of pt(y, y) as the Laplace trans-

form of a bounded measure also holds for Markov chains which are skip-free to the

left on E = {1, 2, 3 . . . }. Thus for such processes too, the conditioning problem

has a solution.

Consider now the following example, due to Jacka and Roberts (1995), of a

process for which the conditioning problem does not have a solution.

Example 4.29. Let X be the Markov chain on E = {1, 2, 3, . . . } with

nonconservative q-matrix given by

q(x, y) =



−1 2−2 2−3 2−4 · · ·

2−2 −2−2

2−3 −2−3

2−4 −2−4

...
. . .


.

When started in state 1, X waits for an exponential time with mean 1 before either

jumping to state k with probability 2−k+1 or getting killed with probability 1/2.

In state k > 1, it first waits for an exponential time with mean 2k+1 and then

jumps back to state 1. Thus the process is irreducible, and the smallest cemetery

neighbourhood is given by N = {1}. In particular, Assumptions II, IV and the

parabolic Harnack inequality are satisfied. Moreover, X is clearly symmetric, so

that F−∞ ∩ N consists of at most one point. Nevertheless, the quasistationary

conditioning procedure does not work. Indeed, suppose that g(x) is a positive

solution to the equation Qg = λg. We must therefore solve the system

−g(1) +
∞∑
k=2

2−kg(k − 1) = λg(1),

2−kg(1)− 2−kg(k − 1) = λg(k − 1), k ≥ 2.
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Clearly the only solution is g(x) = 0. Now Proposition 4.15 guarantees that the

minimal parabolic functions associated with points of F−∞ ∩ N are of the form

eλtg(x); thus there are no nonzero minimal parabolic points in F−∞ ∩N for this

process, and in particular the sequence (hs) cannot converge. The source of this

failure lies in the fact that Assumption III, which requires that the jumps of X

be bounded, does not hold. It is this assumption which guarantees that there

exists at least one parabolic function in F−∞. Here, the process can jump into

each and every state from state 1.

We end this chapter with one last remark. Jacka and Roberts (1995) gave a

number of equivalent conditions for (4.1), among them the existence of a Yaglom

limit

lim
r→∞

Px(f(Xr) | ζ > r) = 〈κ, f〉,

where κ is a probability measure, independent of the initial position x ∈ E. When

this holds, it suffices to take f(x) = Px(ζ > t) to find that

lim
s→−∞

Px(ζ > t− s)
Pν(ζ > −s)

= eλtg(x),

with eλtg(x) invariant, and consequently the conditioning problem (4.1) has a

solution.

This also means that the existence of some λ-invariant function is necessary

for the existence of a Yaglom limit. The converse is not true. Recalling the last

example above, since the q-matrix does not have any strictly positive eigenfunc-

tions, it cannot have a Yaglom limit either.

In the next chapter, we shall discuss some necessary conditions for the exis-

tence of the Yaglom limit.

4.7 Open Questions

With reference to Section 4, are there simple conditions which can be used to

drop the bounded jump Assumption III? In the last part of that section, it is

stated that one could look for an excessive function g which majorizes (hs). This
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function, if it exists, will almost never be bounded, unless the process X turns

out positive Λ∗-recurrent (by an argument involving Tweedie’s Test).

We have restricted our attention to initial distributions ν which are compactly

supported. This was due mainly to the local nature of the parabolic Harnack

inequality. If this inequality were to hold on all of E, the results would apply

to any initial distribution. The counterexample at the end of Section 3 shows

that this can only occur for positive Λ∗-recurrent processes. However, one could

still ask for a characterization of the initial distributions which would allow the

conditioning procedure to work.

Another technical problem associated with Chapter 4 is the following: is the

combination of Assumptions II, III and IV (together with the parabolic Harnack

inequality) sufficient for success of the process level conditioning? The result

stated in Proposition 4.24 offers strong evidence for this; however, I was only

able to make progress under the further assumption that X has a symmetric

transition density (Theorem 4.27). It seems to me that much weaker conditions,

if any, should suffice.

Finally, there is the following open question: why does the conditioning pro-

cedure 4.1 automatically lead to a Λ1-invariant function? Here the emphasis is on

the location of the parameter Λ1, near or at the bottom of the spectrum. A heuris-

tic explanation can be given in the light of the results of this chapter. As was

shown, the conditioned process Y may be identified with the process X, Doob-

conditioned to exit the Martin boundary in the window projected onto {−∞}×E

by a cemetery neighbourhood N . This set is in some sense closest to the ceme-

tery state. When the conditioning procedure works, let eλtg(x) be the parabolic

function associated with the window. Since g is excessive for the original process

X, we can consider the transformed semigroup P g
t (x, dy) = Pt(x, dy)g(y)/g(x).

Under Pgx, the lifetime of X has mean |λ|−1, and this is the shortest possible when

compared with other λ-invariant functions. A challenging question here would

be to ask if an underlying minimization principle operates. This would offer a

very powerful method for checking the validity of (4.1). Indeed, the conditioning
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problem might then be reduced to checking for the existence of some function g

solving the problem

Minimize {λ : Ag = λg, g > 0 in E}.



Chapter 5

Compactifications and Yaglom

Limits

The present chapter continues the study of the quasistationary tool box theorems

via boundary theory. We are interested here in the existence of Yaglom limits. As

was explained in the last chapter, it was shown by Jacka and Roberts (1995) that

the existence of a Yaglom limit implies the success of the quasistationary con-

ditioning procedure (4.1). We shall now ask the converse question. Specifically,

suppose that

lim
r→∞

Pν(Ht | ζ > r) = Pν(Ht, e
Λtg(Xt)), Ht ∈ Ft;(5.1)

does it necessarily follow that there exists a probability measure κ on E such that

lim
r→∞

Pν(f(Xr) | ζ > r) = 〈κ, f〉 ?(5.2)

As we will see, the answer is negative in general, but we shall identify some

sufficient conditions for the implication to hold. We fix an initial distribution ν

on E. In the previous chapter, we found conditions that guarantee the validity

of the following assumption, which we will now state formally:

Assumption V: There exists Λ ≤ 0 such that

lim
r→∞

Pν(ζ > t+ r | ζ > r) = eΛt, t ≥ 0.

97
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In particular, this occurs when (5.1) holds. We will also need Assumption II of

Chapter 3, whose continuity hypothesis guarantees that x 7→ Ptf(x) is bounded

and continuous whenever f is bounded with compact support in E.

5.1 Compactifications and Tightness

In this section, we begin a study of the family of probability measures (νt) defined

by

〈νt, f〉 = Pν(f(Xt) | ζ > t).

These measures are defined on E, and their convergence to some probability κ is

precisely the meaning of (5.2). What we shall look for are conditions guaranteeing

νt ⇒ κ in the sense of weak convergence of probability measures. Accordingly,

we use the standard two step procedure. First, we show tightness of the family

(νt), and then in the next section, we shall study the possible limit points of (νt).

According to Prokhorov’s criterion, tightness of probability measures always

occurs when these are defined on a common compact set. Since all the proba-

bilities νt are defined on E, the family (νt) is tight on any compactification F of

E, and the possible limit points are consequently all probability measures on F ,

which may or may not charge E. To find out where the probability mass ends up

as t→∞, we require a compactification F with good probabilistic properties.

One requirement is that the topology induced by F on E be at least as fine

as the original topology. This is to prevent a relatively awkward class of test

functions along which the Yaglom limit (5.2) would exist. The stated require-

ment on the topology induced by F on E guarantees that the Yaglom limit, if it

exists at all, occurs along all originally continuous functions, without reference to

the topology of F . This is important for there will in general exist many differ-

ent compactifications (with correspondingly different topologies on the boundary

F\E) which satisfy our conditions.

To get a probabilistic understanding of tightness of (νt), we require the exis-

tence of some Markov process Y on F , whose restriction to E coincides with X.
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This process should exhibit a continuous variation of the law of ζ, as a function

of the initial position. According to the result below, all these conditions can

be met using a suitable Ray-Knight compactification of E. This is intended as

an existence result only. In applications, one would use any compactification F

satisfying (i), (ii) and (iii) below.

Proposition 5.1. Suppose Assumption II holds. There exists a compactification

F ′ of E with the following properties:

(i) Every compactly supported function on E which was originally continuous

remains continuous on F ′;

(ii) There exists on F ′ a Strong Markov process (X ′t) extending (Xt): for every

probability measure µ on F ′, there exists a probability measure Qµ on F ′-

path space such that

Qµ(f0(X ′t0)f1(X ′t1) · · · fn(X ′tn)) = Pµ(f0(Xt0)f1(Xt1) · · · fn(Xtn)),(5.3)

whenever µ is concentrated on E and f0, . . . , fn are positive functions on E.

(iii) The lifetime ζ ′ of X ′ has a Laplace transform which is continuous in x:

equivalently, the function

x 7→ Up(x, F
′) =

∫ ∞
0

e−ptQx(ζ
′ > t)dt is continuous on F ′.

The items listed are standard properties of the Ray-Knight compactification

procedure, as can be found in Getoor (1975), Dellacherie and Meyer (1987),

Sharpe (1988) or Rogers and Williams (1994). This procedure is usually per-

formed on initially Markovian processes, so we outline below the trivial changes

required.

Proof. We start by turning X into an honest (conservative) process by adding

a cemetery state ∂, isolated from E. Thus ζ coincides with the first hitting

time of ∂. Now X is Markovian on E ∪ {∂}, and we let F be any Ray-Knight

compactification of E ∪ {∂}. Since ∂ was isolated from E, it remains isolated in
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F . Thus F ′ = F\{∂} is again compact. By Assumption II, the resolvent (Vp)

of X maps the set of uniformly continuous functions (in the original topology)

into itself, and consequently part (i) follows (Getoor (1975)). On F , there exists

a unique Markovian resolvent (Up) with the following properties:

(a) Upf = Vpf on E ∪ {∂}, whenever f = 0 on F\(E ∪ {∂}),

(b) Up : Cb(F ) → Cb(F ), where Cb(F ) is the set of bounded continuous func-

tions on F .

Associated with (Up) is a Strong Markov process (Yt) with semigroup (Qt) on F

satisfying (ii) with X ′ replaced by Y . In particular, if T∂ = inf{t > 0 : Yt = ∂} is

the first time that Y hits ∂, we have

Qx(T∂ > t) = Px(ζ > t), x ∈ E, t ≥ 0.

Thus we can construct X ′ by killing Y upon first hitting ∂, and (5.3) will hold.

Clearly the semigroup of X ′ is just (Qt) restricted to the set F ′. Meanwhile,

since the point ∂ is absorbing for Y , we have the identity Qx(ζ
′ > t) = Qx(Yt ∈

F\{∂}) = Qt(x, F
′). Now 1F ′ is continuous on F because ∂ is isolated, so by (b),

the function Vp(x, F
′) =

∫∞
0
e−ptQx(ζ

′ > t)dt is continuous on F , and a fortiori

on F ′.

To distinguish the original from the extended process, we will keep the nota-

tion introduced above to state and prove the next result.

Theorem 5.2. We suppose that Assumptions II and V hold. If ξ is any weak

limit point of (νt) on F ′, then its mass is always concentrated on the set

H = {x ∈ F ′ : Qx(ζ
′ > 0) = 1}.

If Λ < 0, then ξ is also concentrated on

G = {x ∈ F ′ : Qx(ζ
′ <∞) = 1},

while if Λ = 0, the mass of ξ is entirely contained in

G′ = {x ∈ F ′ : Qx(ζ
′ = +∞) = 1}.
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Proof. Let ξ be a weak limit point of (νt), so there exists some sequence tn →∞

such that νtn ⇒ ξ weakly on F ′. Since the function Up(x, F
′) is continuous on

F ′, we have ∫ ∞
0

e−psQξ(ζ
′ > s)ds =

∫ ∞
0

e−ps〈ξ,Q·(ζ ′ > s)〉ds

= 〈ξ, Up(·, F ′)〉

= lim
n→∞
〈νtn , Up(·, F ′)〉.

Since each probability measure νt is concentrated on E, we have by property (ii)

of Proposition 5.1

lim
n→∞
〈νtn , Up(·, F ′)〉 = lim

n→∞
〈νtn , Vp(·, E)〉

= lim
n→∞

∫ ∞
0

e−ps〈νtn , Ps(·, E)〉ds

= lim
n→∞

∫ ∞
0

e−psPν(ζ > tn + s | ζ > tn)ds

=

∫ ∞
0

e−pseΛsds,

and using Assumption V as well as the bounded convergence theorem. By the

uniqueness of Laplace transforms, since both the functions s 7→ Qξ(ζ
′ > s) and

s 7→ eΛs are right continuous, we find

Qξ(ζ
′ > s) = eΛs.

Now let s → 0; we see that Qξ(ζ
′ > 0) = 1, and since Qx(ζ > 0) ≤ 1, the

probability measure ξ must be concentrated on H. If we let s → ∞ instead, we

have two cases to consider. If Λ < 0, then by bounded convergence Qξ(ζ
′ =∞) =

0, and hence ξ charges only G. If Λ = 0, then Qξ(ζ
′ = ∞) = 1 so that (once

again, since Qx(ζ
′ =∞) ≤ 1) ξ can only charge G′.

In the next section, we shall proceed to an identification of the structure of

the possible limit points ξ.

According to Theorem 5.2, there can never exist a Yaglom limit (5.2) (where

κ is a probability measure) in the case Λ = 0, since any possible limit measure
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ξ is then concentrated on that part of the boundary F ′\E from which X ′ takes

forever to die.

It is possible to classify some of the boundary points x ∈ F ′\E as follows:

Definition 5.3. (i) A point x is called asymptotically remote (from the ceme-

tery state) if it forms a trap: Qx(X
′
t = x ∀t) = 1. This property is denoted

(AR).

(ii) A point x is called asymptotically proximate if it is regular for {∂}:

Qx(ζ
′ = 0) = Qx(T∂ = 0) = 1. This property is denoted (AP).

The terminology for (i) is due to Ferrari et al. (1995) and for (ii) it is due

to Pakes (1995). The Blumenthal zero one law implies that every state x ∈ F

satisfies Qx(ζ
′ = 0) = 0 or 1. Some of the remaining boundary points may be

holding points, where X ′ waits an exponentially distributed time before jumping.

If holding points do not exist on the boundary F ′\E, then each boundary point

is either (AP), (AR), or else the sample path of X ′ must immediately hit E

a.s. (after which it stays there until death); it is not clear whether it is worth

classifying those types of points in a similar manner as above.

The value of the (AR)/(AP) classification is that it appears naturally in the

conclusions of Theorem 5.2. Specifically, it is worth mentioning the following

corollary:

Corollary 5.4. Under the hypotheses of Theorem 5.2, suppose that each bound-

ary point in F ′\E is either (AP) or (AR). Then the measures (νt) are tight if

and only if Λ < 0.

Note that, if Λ = 0, (νt) cannot be tight regardless of how the boundary

points in F ′\E are classified. It is also worth stating explicitly here that tightness

refers to the original topology, not the Ray-Knight topology where tightness is

automatic.

Example 5.5. Let (Rt) be a uniformly elliptic diffusion on Rd, and suppose

we construct X by killing R upon first exit from the unit disc E = {x : ‖x‖ < 1}.
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The Euclidean boundary points of E are well known to be regular for Ec, that

is limx→∂E Px(ζ > t) = 0 for each t > 0. Set F ′ = E ∪ ∂E, and construct X ′ by

killing R upon first exit from F ′. The process X ′ clearly extends X, and it is easy

to see that its semigroup (hence its resolvent) maps Cb(F
′) into itself. Clearly,

every boundary point is (AP) here. By Theorem 5.2, the (νt) are tight.

Example 5.6. Let X be one-dimensional Brownian motion, killed upon first

hitting zero. The state space is E = (0,+∞), and we shall take F ′ as the Martin

boundary [0,+∞]. Here also, the semigroup of X maps Cb(F
′) into itself, as

can be easily checked. Thus there exists a Feller-Dynkin process on F ′ extending

X. The boundary point 0 is (AP), while the boundary point +∞ is (AR). The

measures (νt) are not tight since Λ = 0.

Example 5.7. Let X be a birth and death chain on Z with constant birth

and death parameters, killed upon first hitting 0. We shall take E = {1, 2, 3, . . . }.

This is the analogue of the previous example. The boundary point +∞ is still

(AR), but now the boundary point 0 is not needed. This gives a case where all

boundary points are (AR).

Example 5.8. Let X be a Markov chain on {1, 2, 3, . . . } whose behaviour

may be described as follows: when started in x ≥ 1, it may jump up to x+ 1, or

jump catastrophically back to state 1, or disappear from the state space. Such

a process was called a pure birth process with catastrophes by Pakes (1995). In

that paper, he gave conditions under which the point +∞ is (AP), (AR), or

neither. When this last possibility occurs, the point +∞ can be a holding point

(where the process waits for an exponentially distributed amount of time before

jumping), or else it might split up into several distinct boundary points (this

occurs when Px(ζ > t) oscillates as x→ +∞).

5.2 Characterization of Limit Measures

In this section, we return to the Martin boundary methodology of the last chapter,

and show how to deduce from it the existence (or not) of a Yaglom limit. This
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point of view appears at first to be quite independent of that in the last section,

but connections will surface in Section 3. At present, we need only keep in mind

that Yaglom limits exist under more stringent conditions than the conditioned

processes of Chapter 4.

To motivate the steps below, we restate the following fact, proved for Markov

chains by Vere-Jones (1969). Suppose a Yaglom limit (5.2) exists with κ being

a probability measure on E. Taking f(x) = Px(g(Xt), ζ > t), it follows from

Assumption V that

〈κPt, g〉 = lim
r→∞

Pν(f(Xr) | ζ > r)

= lim
r→∞

Pν(g(Xr+t) | ζ > r + t)Pν(ζ > r + t | ζ > r)

= eΛt〈κ, g〉.

Thus κ is Λ-invariant. From a slightly different point of view, it defines an

entrance law

ηt(dy) = eΛtκ(dy), t ∈ R.

Meanwhile, Pν(f(Xr) | ζ > r) = 〈νrPt, g〉, and so for each r > 0 we have another

entrance law ηrt (dy) = νrPt(dy). When the Yaglom limit exists, the measures

(ηrt : r > 0) converge to ηt, for each t > 0, as r →∞. In fact, we have

Lemma 5.9. Under Assumption V, the Yaglom limit (5.2) exists if and only if

limr→∞ η
r
t = ηt for all t > 0.

Proof. If the Yaglom limit exists, then the entrance laws converge as explained

in the paragraph above. Conversely, choose t > 0 and g bounded; then

lim
r→∞
〈νr, g〉 = lim

r→∞
〈ηr−tt , g〉/〈ηr−tt , 1〉

=
(
eΛt〈κ, g〉

)
/
(
eΛt〈κ, 1〉

)
,

so that the Yaglom limit exists.

Accordingly, the remainder of this section comprises a study of these entrance

laws. We shall be using similar assumptions to those of Chapter 4, but for a

process X̂ in duality with X. We begin by stating
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Assumption II(bis): Assumption II holds with m being some excessive mea-

sure.

When Assumption II holds, that is Pt(x, dy) = pt(x, y)m(dy) where m is any

σ-finite measure, we can always construct the excessive measure

m̃(dy) =

∫ ∞
0

pt(a, y)dt ·m(dy),

where a ∈ E is fixed (this requires transience of X, otherwise m̃ may not be

σ-finite). Since clearly m̃ � m, we also have Pt(x, dy) = p̃t(x, y)m̃(dy). The

density p̃t(x, y) will be continuous if y 7→
∫∞

0
pt(a, y)dt is continuous.

When Assumption II(bis) holds, we can define a dual semigroup (P̂t) by the

formula

P̂t(x, dy) = p̂t(x, y)m(dy), p̂t(x, y) = pt(y, x).

The associated Markov process will be denoted X̂. We also write X̂ for the

corresponding backward spacetime process, X̂ = (Lr, X̂r).

Consider now the entrance law

ηrt (dy) = νrPt(dy) =

∫
ν(da)pr+t(a, y)

Pν(ζ > r)
·m(dy).

We shall be interested in the function

k̂r(t, y) =

∫
ν(da)p̂r+t(y, a)/Pν(ζ > r);

it is obvious that ηrt (dy) = k̂r(t, y)m(dy).

Lemma 5.10. For each r > 0, the function k̂r is parabolic for X̂ on (−r,∞)×E,

and satisfies ∫
m(dy)k̂r(0, y) = 1.

Proof. We shall in fact show spacetime invariance with respect to X̂, killed on
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exiting (−r, 0)× E: for (t, x) ∈ (−r,∞)× E, u < t+ r,

P̂(t,x)(k̂
r(X̂u), ẑ > u) = P̂u(x; k̂r(t− u, ·))

=

∫
p̂u(x, z)m(dz)k̂r(t− u, z)

=

∫
m(dz)p̂u(x, z)

∫
p̂r+t−u(z, a)ν(da)/Pν(ζ > r)

=

∫
p̂r+t(x, a)ν(da)/Pν(ζ > r)

= k̂r(t, x).

Finally, ∫
m(dy)k̂r(0, y) =

∫ ∫
m(dy)p̂r(y, a)ν(da)

Pν(ζ > r)

=

∫ ∫
ν(da)pr(a, y)m(dy)

Pν(ζ > r)
= 1,

which is the claimed normalization.

Formally, Lemma 5.10 has the effect of reducing the question of the conver-

gence of the entrance laws (ηr) to that of the normalized parabolic functions (k̂r)

for X̂, a very similar problem to that treated in the last chapter. There are some

significant differences, however.

Unlike the case of Chapter 4, the functions (k̂r) are normalized with respect to

the measure m, and this is generally a σ-finite measure, rather than a compactly

supported probability measure ν. Recalling the comments made after Lemma 4.6,

a limit function k(t, y) = limrn→∞ k̂
rn(t, y) might well be zero, in which case also

ηrnt ⇒ 0, and the Yaglom limit doesn’t exist (as a probability measure). The

tightness conditions of Corollary 5.4 guarantee that this does not happen.

Another point of note concerns the problem of extending the domain of the

function k̂r(t, y) to the whole of (−∞, 0) × E. We are aiming for an integral

representation on the Martin boundary of (−∞, 0)×E as in the last chapter, so

it is necessary that k̂r be the restriction to (−r, 0)×E of some excessive function

for X̂. In the last chapter, we took hs to be a positive constant on (−∞, s]×E,

chosen so as to make the extended function parabolic when A1 = 0, but this is
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not natural here. For example, if the measure ν satisfies ν(da) = g(a)m(da), then

we generally have limt→−r k̂
r(t, y) = g(y). Since the density function g can be

arbitrary, the existence of a parabolic continuation of k̂r into (−∞,−r]×E poses

some problems, and will depend strongly on the measure ν. Another example

concerns the case when X is Brownian motion on the unit disk, the transition

density of which (relative to Lebesgue measure) satisfies

lim
t↓0

pt(x, y) =

∞ if x = y,

0 if x 6= y.

If ν(dz) is a point mass εa(dz), it follows that limt↓−r k̂
r(t, a) =∞.

It is obvious that the manner in which we extend k̂r cannot affect the limit

points k̂(t, y) = limrn→∞ k̂
rn(t, y). Nevertheless, it can have a drastic effect on

our ability to identify the limit in question.

In cases when the initial probability measure ν is compactly supported, a

useful extension is to take k̂r(t, x) = 0 on (−∞,−r] × E. It is easy to check

that this definition turns k̂r into an excessive function for X̂ on the whole of

(−∞, 0) × E. As the extension does not affect the normalization, there exists

a corresponding integral representation on the Martin compactification of X̂.

The Martin kernel used therein must be normalized with respect to the measure

r(ds, dy) = ε0(ds)m(dy), and hence

K̂

(
(t, x); (s, y)

)
=

1(−∞,t](s)p̂t−s(x, y)

1(−∞,0](s)
∫
m(dz)p̂−s(z, y)

=
1(−∞,t](s)pt−s(y, x)

Py(ζ > −s)
.

Comparing this last expression with the definition of k̂r, we find an explicit

form for a representing measure:

Proposition 5.11. For each r > 0, the function k̂r is represented on the para-

bolic Martin compactification by the probability measure ξr, concentrated on the

set {−r} × supp(ν), and given by

ξr(ds, dy) = ε−r(ds)Py(ζ > −s)ν(dy)/Pν(ζ > −s).
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Thus

k̂r(t, x) =

∫
K̂

(
(t, x); y

)
ξr(dy).

Proof. We check simply that the representation works with ξr as given:∫
K̂

(
(t, x); (s, y)

)
ξr(ds, dy) =

∫
E

1(−∞,t](s)pt−s(x, y)

Py(ζ > −s)
ε−r(ds)

Py(ζ > −s)ν(dy)

Pν(ζ > −s)

= 1(−∞,t](−r)
∫
pt+r(x, y)ν(dy)

Pν(ζ > r)

= k̂r(t, x).

Let D̂ denote the closure, in the Martin topology of X̂, of the set (−∞, 0)×

supp(ν). Since ξr is concentrated on F̂−r ∩ D̂ by Proposition 5.11, every weak

limit point of (ξr) is a probability measure on F̂−∞ ∩ D̂.

In cases when ν charges all of the state space E, all we can deduce from Propo-

sition 5.11 is that the weak limit point ξ is concentrated on F̂−∞. This set usually

consists of a large number of points, and by choosing the initial distribution ν

appropriately, ξ can often be made to charge any given one, as the next example

shows. Compare it with the example following the proof of Theorem 4.21.

Example 5.12. Let Xt = Bt − αt, where B is a one-dimensional Brownian

motion, and X is killed upon first leaving (0,∞). The drift is towards zero, i.e.

α ≥ 0. It is well known (Revuz and Yor (1991)) that this process is related to

Brownian motion (0,∞) (that is, the case α = 0) by a Girsanov transformation.

Accordingly, the semigroup (Qt) of X is related to the semigroup (Pt) of killed

Brownian motion by the formula

Qt(x, dy) =
1

e−αx
Pt(x, dy)e−α

2t/2e−αy, t > 0, x > 0.

If we set g(t, x) = eα
2t/2e−αx, this function is parabolic: 1

2
∂2g/∂x2 = ∂g/∂t.

In terms of the spacetime process, Xr = (Lr, Xr) = (Lr, Br − αr) has semi-

group P
g

r(x, dy) = P r(x, dy)g(y)/g(x), where (P r) is the semigroup of Br =

(Lr, Br). Then h is excessive for X if and only if h = k/g, where k is excessive

for B. The Martin kernel K
g

of X is related to that of B via the formula

K
g
(x, y) =

〈r, g〉
g(x)

K(x, y),
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where r(ds, dy) = ε0(ds)ν(dy) is the normalizing measure. Using the example

after the proof of Theorem 4.21, the parabolic Martin boundary of X has minimal

functions as follows: (we set να =
∫
e−αzν(dz) = 〈r, g〉)

K
g
(x, (τ, 0)) =


ναe

−α2τ/2 x√
2π(t−τ)3

exp

(
− (x−α(t−τ))2

2(t−τ)

)
if t > τ,

0 if t ≤ τ,

and for any real number γ ≤ 0, we also get another minimal function by the

formula (where c := (γ2 − α2)/2):

K
g
(x, (−∞, γ)) =

ναe
cteαx sinh(

√
|α2 + 2c| · x) if c = (γ2 − α2)/2 > −α2/2,

ναxe
cteαx if c = −α2/2.

Only the boundary points (−∞, γ) belong to F−∞. The measure m(dx) = e2αxdx

is symmetrizing, so Assumption II(bis) applies, and we can define the process X̂ as

described above. Since the transition density with respect to m satisfies pt(x, y) =

pt(y, x), we find immediately that F̂−∞ consists of the minimal functions

K̂
g

(x, (−∞, γ)) =

ναe
cte−αx sinh(

√
|α2 + 2c| · x) if c > −α2/2,

ναe
ctxe−αx if c = −α2/2.

This agrees with results of Martinez and San Martin (1994). The quasistationary

distribution with eigenvalue c is given (up to normalization) by

µc(dx) =

e
−αx sinh(

√
|α2 + 2c| · x)dx if − α2/2 < c < 0,

xe−αxdx if c = −α2/2.

If we choose the initial distribution ν to be µc, then the function k̂r(t, x) equals

ectdµc/dx for t > −r, and a natural way to extend this into (−∞,−r]× E is to

set k̂r(t, x) = ectdµc/dx there. Independently of r > 0, the k̂r-process is Doob-

conditioned to hit the boundary point γ(c), and hence so is the limiting process

as r →∞. In terms of Yaglom limits, this is the familiar result that

lim
t→∞

Pµc(f(Xt) | ζ > t) = 〈µc, f〉.
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The point γ is associated with any Martin sequence with limn→∞(sn, yn/sn) =

(−∞, γ), hence all sequences such that (yn) is bounded are associated with the

single point γ = 0, that is, the eigenfunction with eigenvalue c = −α2/2. If we

take a compactly supported initial distribution ν with support D, the set F̂−∞∩D̂

therefore consists of this single eigenfunction, and therefore νt ⇒ µ−α2/2, provided

the (νt) are tight (see Theorem 5.15).

The last example shows that the limit points k̂ of the family (k̂r) can range over

the full boundary subset F̂−∞, in cases when the initial distribution charges all of

E. For such measures, the extension we chose for k̂r is not entirely satisfactory,

and a different choice is needed. In view of the last example, the problem of

extending k̂r to the whole of (−∞, 0)×E is essentially equivalent to the domain

of attraction problem for limiting conditional distributions (Pakes (1995)): given

a QSD µ, for which initial distributions ν does the Yaglom limit, started with ν,

converge to µ?

The explicit calculation of the measure ξr given by Proposition 5.11 is also

interesting from the point of view of Chapter 4. If the process level condition-

ing (5.1) works, then the function hs(0, ·) must converge as s → ∞. If this

convergence takes place in L1(dν), then we must have ξr ⇒ ξ for some prob-

ability measure ξ on F̂−∞, and hence the functions k̂r must converge as well.

However, we do not have a guarantee that the latter limit is nonzero.

Returning to the case that ν is supported by a compact set D, we can identify

the boundary points in F̂−∞ ∩ D̂ as in Chapter 4, by letting D take the role of a

good cemetery neighbourhood.

Proposition 5.13. If D is a compact set and the parabolic Harnack inequality

holds for X̂, then each nonzero minimal excessive function for X̂ which belongs

to F̂−∞ ∩ D̂ is of the form k̂(t, x) = eλtĝ(x), where ĝ solves Âg = λĝ in E.

Moreover, the following two statements are equivalent:

(i) For some y ∈ D,

lim s→−∞K̂
(
x, (s, y)

)
> 0
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holds for all x in a set of positive η-measure,

(ii) The set F̂−∞ ∩ D̂ contains a single nontrivial, minimal parabolic boundary

point z.

Proof. Since for each ε > 0,

K̂

(
(t, x); (s, y)

)
= pt−s(y, x)/Py(ζ > −s)

=
Py(ζ > −s+ ε)

Py(ζ > −s)

(
pt−s(y, x)/Py(ζ > −s+ ε)

)
≤ K̂

(
(t− ε, x); (s− ε, y)

)
,

the same proofs as those of Propositions 4.15 and 4.24 can be used, interchanging

N and D.

According to the above proposition, (i) or (ii) imply that limr→∞ k̂
r(t, y) =

eλtg(y) for some positive function g. Moreover, Assumption V obviously follows.

The function g is not necessarily integrable with respect to m. This is exemplified

by the case where X is Brownian motion killed upon leaving (0,∞), that is, the

example after Proposition 5.11 with zero drift. Since the decay parameter Λ1

equals zero, the measures (νt) are not tight, and in fact g(x) = x, which is not

Lebesgue integrable.

5.3 Yaglom Limits

One drawback of Proposition 5.13 is that it implies convergence of the functions

k̂r(t, x) for t < 0. To get the Yaglom limit (5.2), we require convergence for

t ≥ 0. Nevertheless, Proposition 5.13 essentially implies that the Yaglom limit,

if it exists, must be κ = g · m. This is the counterpart to Proposition 4.20 in

Chapter 4. Before proving the counterpart to Theorem 4.21, we need a condition

which guarantees that F̂−∞ ∩ D̂ contains an integrable eigenfunction g; a similar

problem was solved in Chapter 4, where it was necessary to prove that the limit

of (hs) is strictly positive. This was achieved by restricting the initial distribution
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to compactly supported ones. We shall show that the function g is positive by

using the tightness conditions of Section 1.

Proposition 5.14. Let X be a Markov chain with compactly supported initial

distribution ν, and suppose that the family (νt) is tight. Then statement (ii) of

Proposition 5.13 holds, and hence limr→∞ k̂
r(t, x) = eΛtg(x).

Proof. Without loss of generality, suppose that ν(dx) = εy0(dx) is the point mass

at y0 ∈ E. For fixed (t, x) ∈ (−∞, 0)× E, we calculate

K̂

(
(t, x); (s, y0)

)
= pt−s(y0, x)/Py0(ζ > −s)

≥ pt−s(y0, x)/Py0(ζ > t− s)

= 〈νt−s, 1{x}〉.

Let ν∞ = lim s→−∞νt−s. An elementary calculation shows that νtPr ≤ νt+r for

r > 0, so by Fatou’s lemma∫
ν∞(dz)pr(z, x) ≤ lim s→−∞

∑
νt−s({z})pr(z, x)

≤ lim s→−∞νt+r−s({x}) = ν∞({x}),

and hence ν∞({x}) > 0, because pr(z, x) > 0 by irreducibility, and ν∞(E) = 1

by tightness. We have shown that statement (i) of Proposition 5.13 holds, and

hence so does statement (ii).

The existence of the Yaglom limit follows:

Theorem 5.15. Let Assumption II(bis) hold, and let X̂ satisfy Assumption III

and the parabolic Harnack inequality. If the family (νt) is tight and the conclusion

of Proposition 5.14 holds, then the Yaglom limit (5.2) exists and is a probability

measure: for every bounded measurable f ,

lim
r→∞

Pν(f(Xt) | ζ > t) =

∫
f(x)g(x)m(dx),

where g is strictly positive, Λ-invariant for X̂ (with Λ < 0), and such that∫
g(x)m(dx) = 1.
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Proof. By definition, since

k̂r(−1, z) = k̂r−1(0, z)/Pν(ζ > r | ζ > r − 1),

we have by Assumption V that limr→∞ k̂
r(0, z) = g(z), and this convergence is

bounded on compact subsets of E, by Proposition 5.13. Since
∫
k̂r(0, z)m(dz) =

1, we shall have
∫
g(z)m(dz) = 1 if the convergence also occurs in L1(dm). This

follows from the tightness of (νt): take ε > 0 arbitrary, and chooseD compact such

that νr(D
c) < ε for all r. There exists a constant C such that supr k̂

r(0, z) < C for

all z ∈ D, hence we can use bounded convergence (since m is finite on compacts)

to deduce

lim
r→∞

∫
k̂r(0, z)m(dz) = lim

r→∞

∫
D

k̂r(0, z)m(dz) + lim
r→∞

∫
Dc
k̂r(0, z)m(dz)

≤
∫
D

g(z)m(dz) + ε.

Letting ε ↓ 0 (and consequently D ↑ E) gives

1 = lim
r→∞

∫
k̂r(0, z)m(dz) ≤

∫
g(z)m(dz),

while Fatou’s lemma implies
∫
g(z)m(dz) ≤ 1. Using Scheffé’s lemma, we de-

duce that k̂r(0, ·) converges to g in L1(dm). Hence for any bounded measurable

function f ,

lim
r→∞

Pν(f(Xt) | ζ > r) = lim
r→∞

∫
f(z)k̂r(0, z)m(dz)

=

∫
f(z)g(z)m(dz)

= 〈κ, f〉,

where κ is the probability measure g ·m.

Example 5.16. Let X be an open migration process with a symmetric

transition function (relative to some symmetrizing measure m) - see the example

after Theorem 4.27. This process clearly satisfies Assumption II(bis), as the

symmetrizing measure, being invariant, is also excessive. As seen in Chapter 4,

the conditioned process exists if a finite cemetery neighborhood can be found.
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Thus Assumption V holds. Assuming that Λ < 0 and that the F ′-boundary points

are all either (AP) or (AR), the measures (νt) must be tight. By Proposition 5.14

and Theorem 5.15, the Yaglom limit exists if the initial distribution ν is compactly

supported.

The corresponding theory in discrete time is more complicated. Kesten (1995)

gave an example of a process with uniformly bounded jumps on E = Z for

which the measures (νt) are tight, but for which the Yaglom limit does not exist.

Consequently, Proposition 5.14 must fail in this case. Complications arise, in the

discrete time setting, because the transition function pt(x, y) need not be strictly

positive on E ×E, even though the process may be irreducible. This happens in

Kesten’s example, where no matter what the time t is, pt(x, y) = 0 if |x− y| > t.

The proof of Proposition 5.14 breaks down, and consequently the conclusion of

Proposition 5.13 fails. Indeed, Kesten has shown that there are at least two

distinct subsequential limits for (νt), both of these quasistationary distributions.

Thus the window F̂−∞ ∩ D̂ must consist of at least two distinct minimal points

in this case.

5.4 Open Questions

The methods of this chapter are very closely related to those of the last chapter,

and many of the questions posed there have their counterpart here:

How can we weaken the assumption that ν be compactly supported? As

observed in Section 2, the limit points k̂ need not in general be representable by

a measure on F̂−∞∩ D̂. When ν charges all of E, suppose that for each r, we can

find a strictly positive parabolic function gr on (−∞, 0)×E which extends k̂r. If

the lifetime of the gr-transform of X̂ is finite, then the method of Chapter 4 can

be used to show that gr is representable by a probability measure ξr concentrated

on N̂ , where N is a cemetery neighbourhood. Thus in this case, we can proceed

exactly as in Chapter 4.

When ν is compactly supported, and the associated Yaglom limit κ exists,
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the latter is a quasistationary distribution whose parameter Λ is minimal. The

lifetime of the process X, started in κ, has the smallest mean of all possible

quasistationary distributions. Why this is so is still a mystery, but it seems clear

that this fact is closely linked to the corresponding problem for the conditioned

process; see the open questions at the end of Chapter 4.

Finally, I shall mention one further problem, of great importance to practi-

tioners. Once a Yaglom limit is shown to exist, it is desirable to have estimates

on the convergence rate. This is necessary for the following reason: if the mea-

sures (νt) converge too slowly, the process is likely to die before quasistationarity

manifests itself. Few results in this direction are known. The interested reader

can start with the last section of van Doorn (1991), which identifies the spectral

gap between the first and second eigenvalues as an important ingredient, but an

actual “test for quasistationarity” is far from being a reality yet. Chan (1997)

discusses this issue via the theory of Large Deviations.
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