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Abstract. For continuous time Markov chains on a countable state space,

we derive a parabolic Harnack inequality using probabilistic methods. We

derive some consequences of this inequality for the compactness of parabolic

(i.e. spacetime harmonic) functions of the process.

1. Introduction

The parabolic Harnack inequality (see definition in Section 3) is a fundamental

tool for the study of the Heat Equation (see Doob, 1984),

∂

∂t
u(t, x) =

1
2

∆u(t, x), t > 0, x ∈ Rd.(1)

Besides providing bounds on the fundamental solution of (1), it is also the basis

for the compactness of the set of solutions u(t, x), as we vary the initial conditions

u(0, ·), of (1). These functions are known as parabolic functions. In this paper,

we prove an analogous inequality for Markov chains, i.e. for the case when the

Laplacian in (1) is replaced by the q-matrix of some Markov chain on a countable

state space.

From the perspective of probability theory, it is natural to associate with the

Laplacian a Brownian motion process X. The parabolic, and more generally su-

perparabolic functions (where the = sign in (1) is replaced by ≥) then have an

interpretation as excessive functions (see definition in Section 2) for the heat pro-

cess (t0 − t,Xt).

A systematic program exists relating the potential theory of the equation (1)

with the theory of Brownian motion (e.g. Doob, 1984). Analogously, the Laplacian
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can be replaced by the generator of some other Markov process X and a potential

theory can be developed also (e.g. Dellacherie and Meyer, 1987).

Unfortunately, the generality achieved by the latter theory appears to have left a

gap in the case of the parabolic Harnack inequality. This standard inequality is well

publicized in the case when X is a diffusion process, and in this case it goes back at

least to the work of Moser (1964). When combined with the Ascoli-Arzela theorem,

it implies that any set (un) of parabolic functions has a convergent subsequence,

uniformly on compact sets, to some parabolic function u (Harnack’s convergence

theorem; see Doob, 1984, 1.XV.11 Theorem (a) in the case of Brownian motion).

A similar result is known for more general Markov processes X, but for sets of

superparabolic functions, with convergence to a limiting superparabolic function.

There does not appear to be stated explicitly in the probabilistic literature a re-

sult dealing with arbitrary sets of parabolic functions, even for Markov chains. It

is sometimes assumed that the un are monotone (increasing or decreasing in n),

in which case the limit u clearly exists and is parabolic. We do not make this

assumption in Theorem 10.

When X is a Markov chain, this compactness result for parabolic functions has

a close connection to the Strong Ratio Limit property or SRLP (see Breyer, 1997,

1998), which is often of interest when Markov chains are applied to the Sciences.

The connections between the SRLP and the limiting properties of quasistationary

distributions are well known (see Pollett, 1993). The SRLP may be viewed geomet-

rically as a property of the Martin boundary of the spacetime process (t0 − t,Xt),

and we shall apply the results of this paper towards this end in another paper

(Breyer, 1998).

The plan of the present paper is as follows: Section 2 lists the assumptions, and

characterizes parabolic (i.e. spacetime harmonic) functions in terms of the local

martingale generator A. Since parabolic functions are sometimes unbounded, we

could not have used a more standard operator, such as the Hille-Yosida infinitesimal

generator, whose domain includes only bounded functions.

In Section 3, we prove a parabolic Harnack inequality when X is a Markov chain

on a countable state space. We also show that this inequality cannot hold for more

general Markov chains.
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Section 4 contains a theorem on the compactness of parabolic functions, similar

to Harnack’s theorem.

2. Markov processes and the local martingale generator

Let (Xt : t ≥ 0) denote a Strong Markov process with right continuous sample

paths and state space E. We assume that E is a locally compact metric space,

and that the transition function (Pt : t ≥ 0) of X maps Borel functions into Borel

functions. The lifetime of X is

ζ = inf{t > 0 : Xt /∈ E or Xt− /∈ E},(2)

where we shall assume that Xζ+t /∈ E for all t ≥ 0, and we write Pν for the law of

X when started with X0 ∼ ν. Given a Borel set A ⊆ E, we shall denote by TA the

first hitting time of A, namely TA = inf{t > 0 : Xt ∈ A}.

A Borel function f : E → [0,∞] is called excessive if Ptf ≤ f and limt↓0 Ptf = f .

We shall assume that X is a right process (see Dellacherie and Meyer, 1992). This

means that whenever f is excessive, the process f(Xt) is is a right continuous

(Pν ,Ft)-supermartingale. Here (Ft : t ≥ 0) is the usual completed filtration, that

is the smallest right continuous filtration containing F0
t = σ(Xs : s ≤ t) and such

that F0 contains all ν-null sets, as ν ranges over all possible probability measures

on E.

We now define the local martingale generator A for the minimal process with

(possibly finite) lifetime ζ. It acts on locally bounded Borel functions only.

Definition 1. A localy bounded Borel function f is said to belong to the domain

D(A) of the local martingale generator A if there exists a Borel function g(x) =:

Af(x) such that the process

Mf
t = f(Xt)1(ζ>t) − f(X0)−

∫ t∧ζ

0

Af(Xs)ds

is, for each (Ω, (Ft),Px), a right continuous local martingale up to ζ in the following

sense: there exists a sequence of stopping times Tn ↑ ζ such that Mf
t∧Tn is a (Px,Ft)

martingale for each x ∈ E.

The “operator” A is generally multivalued, since the function g = Af can be

arbitrary on sets which are visited by the process for a time set of zero Lebesgue
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measure. At the end of this section, we shall give some examples of well known

generators of this type.

We need the following technical lemma for the proof of Theorem 4. In plain

language, it signifies that the process cannot leave the state space by a jump when

the lifetime is predictable.

Lemma 2. Let τn ↑ ζ be a sequence of (Ft) stopping times. If ζ < ∞ a.s. , then

for every x ∈ E and compact set K ⊂ E,

Px(TKc = ζ > τn ∀n) = 0.

Proof. Consider the predictable stopping time defined by

R =

ζ on {ζ > τn ∀n},

∞ otherwise.

Consider the event A = {XR− ∈ E,R < ∞}. By (Rogers and Williams, 1994,

III.41, Theorem (41.3) ), we have

1 = (P01E)(XR−)1(R<∞) = Ex(1E(XR), R <∞|FR−) a.s. on A,

which is absurd, since the right side of this equation is zero as Xζ /∈ E on {R <∞}.

It follows that Xζ− /∈ E on {ζ > τn ∀n}, and hence on the event {TKc = ζ > τn ∀n},

we get the contradiction

1 = 1K(XTKc−) ≤ 1E(Xζ−) = 0.

This proves the lemma.

Recall the

Definition 3. An excessive function f is called harmonic if for every compact set

K ⊂ E,

Ex(f(XTKc ), ζ > TKc) = h(x).

Theorem 4. A locally bounded Borel function f ≥ 0 is harmonic if and only if it

belongs to the domain D(A) of A and satisfies

Af = 0 in E.
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Proof. If f is harmonic, it is excessive and the process f(Xt)1(ζ>t) is a right contin-

uous supermartingale. Because the function is harmonic, we also have by optional

stopping

f(x) = Ex(f(XT ), ζ > T ) ≤ Ex(f(Xt∧T ), ζ > t ∧ T ) ≤ f(x),

whenever T is the first exit time of a compact set. The process f(Xt∧T )1(ζ>t∧T )

is thus a martingale. Taking a sequence of compact sets Kn increasing to E and

defining Af ≡ 0, we find that Mf
t∧TKcn

is a martingale, so that f satisfies Definition

1 with Tn = TKc
n
↑ ζ. Conversely, suppose that f ∈ D(A) and Af = 0 in E. Let Tn

be a localizing sequence as in Definition 1. Take a compact set K and put T = TKc .

By the martingale stopping theorem,

f(x) = Ex(f(XT∧Tn), ζ > T ∧ Tn)

= Ex(f(XT ), ζ > T, T ≤ Tn) + Ex(f(XTn), ζ > Tn, T > Tn).

On {T > Tn}, the random variable f(XTn) is bounded, since f is locally bounded,

so

lim n→∞Ex(f(XTn), ζ > Tn, σ > Tn) ≤ lim n→∞ ‖f‖K · Ex(ζ > Tn, σ > Tn)

= ‖f‖K Px(σK = ζ > Tn ∀n),

which equals zero by Lemma 2 above. Now it suffices to apply the monotone

convergence theorem (since f is positive) to get

f(x) = Ex(f(XT ), ζ > T ).

It remains only to check that f is excessive. By Fatou’s lemma and the assumed

right continuity of Mf ,

lim t↓0Ptf(x) = lim t↓0Ex(f(Xt), ζ > t) ≥ Ex(f(X0), ζ > 0) = f(x),

and since f(Xt)1(ζ>t) is a positive local martingale, it is also a supermartingale,

which means Ptf ≤ f .

Example 5. Let Xt denote the standard Brownian motion on Rd. By Ito’s

formula, we have D(A) ⊇ C2(Rd) and A = 1
2∆ on C2(Rd).

Example 6. Let X be a Markov chain on E = {1, 2, 3, . . . } with stable q-

matrix (qij), that is qii > −∞. Our assumptions on the lifetime imply that X is
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the minimal process with q-matrix q. The generator A coincides with the q-matrix

(see Rogers and Williams, 1987):

Af(i) =
∞∑
i=1

qijf(j), i ∈ E,

and its domain D(A) includes all functions f : E → R such that Af is finite. The

sequence Tn ↑ ζ can be taken as Tn = TKc
n
, where the Kn are finite sets such that

Kn ↑ E.

Example 7. If X is a Markov process, the associated (backward) spacetime

process X on E = R×E is constructed as follows. Let ν be an initial distribution

on E and choose (T0, X0) ∼ ν. Then set Xt = (T0− t,Xt). We can similarly define

X on any open subset of the form (a, b) × E. The spacetime process is again a

right process (Sharpe, 1988), with lifetime ζ = (T0− a)+ ∧ ζ, and it is easily shown

that the local martingale generator A of X has domain including all functions

f : E → [0,∞] such that f(·, x) is differentiable on {f < ∞} and f(t, ·) ∈ D(A),

and then

Af(t, x) = Af(t, x)− ∂

∂t
f(t, x).

Consequently, Theorem 4 applies to the process X. In analogy with (1), a locally

bounded Borel function f : E → [0,∞] such that f ∈ D(A) and

∂

∂t
f(t, x) = Af(t, x) in (a, b)× E(3)

is called parabolic in (a, b).

3. Parabolic Harnack inequality for chains

In this section, we show that Markov chains on countable state spaces satisfy

the following inequality:

Parabolic Harnack inequality: For any compact sets K ⊆ E, K ⊂ (0,∞)×

E, let s > sup{t : (t, x) ∈ K}. Then there exists a constant C = C(K,K)

such that every function u that is parabolic in (0,∞) satisfies

sup
(t,x)∈K

u(t, x) ≤ C · inf
y∈K

u(s, y).

Let X be an irreducible Markov chain with a countable state space. Here, a set

is compact if and only if it is finite. Let K be such a set. Since the state space E is
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taken to be irreducible, for any x, y ∈ K, there always exists a finite chain of states

x1, . . . , xn such that X can jump from x to x1, from x1 to x2, . . . , xn → y. We

construct a new set K̃ from K by adding all these states to K, for any combination

of states x, y ∈ K. The set K̃ need not be uniquely determined, but it can always

be taken finite, and thus compact, since there are only finitely many ordered pairs

(x, y) with x, y ∈ K.

Theorem 8. Let X be an irreducible Markov chain on a countable state space E,

then the parabolic Harnack inequality holds.

Proof. Let δ0 = s − sup{t : ∃x (t, x) ∈ K̃} > 0, and let r ≥ δ0, x ∈ K and y

such that (s − r, y) ∈ K. Without loss of generality, we will assume that K̃ ⊇

{y : ∃t (t, y) ∈ K}. We denote by T the first exit time by X from the compact

set [s − r, s] × K̃. Note that, on the event {T > r}, we have T = T ◦ θr + r and

XT = XT ◦ θr. Since u is parabolic, it follows from Definition 1 and the Markov

property that

u(s, x) = E(s,x)(u(XT ), ζ > T )

≥ E(s,x)

(
u(XT ), ζ > T > r,Xr = (s− r, y)

)
= E(s,x)

(
E(s,x)

[
u(XT ◦ θr), ζ ◦ θr > T ◦ θr | Fr

]
, T > r,Xr = (s− r, y)

)
= E(s,x)

(
EXr

[
u(XT ), ζ > T

]
, T > r,Xr = (s− r, y)

)
= E(s,x)(T > r,Xr = y)P(s−r,y)(u(XT ), ζ > T )

= Px(Xr = y, TK̃c > r)u(s− r, y),

where the probability on the right is nonzero due to the definition of K̃. Letting

t = s− r range over the set G = {t : ∃x, (t, x) ∈ K}, we get the parabolic Harnack

inequality with constant C given by

C =
(

inf
t∈G,x∈K

Px(Xt = y, TK̃c > s− t)
)−1

<∞.

Since u is arbitrary, this concludes the proof.



8 L.A. BREYER

The parabolic Harnack inequality cannot hold for all chains on uncountable state

spaces, for the following reason: let λ > 0, and consider the parabolic functions

u(t, x) = Ex(f(Xt+t0), ζ > t+ t0) =
∫
Pt+t0(x, dy)f(y),

as f ranges over all positive, bounded Borel functions and t0 > 0. Choosing x, y ∈ E

and δ0 > 0, we find that the resolvent (Uλ) satisfies

Uλ(x, f) :=
∫ ∞

0

e−λtPt(x, f)dt

≤ C
∫ ∞

0

eλtPt+δ0(y, f)dt

= Ceλδ0
∫ ∞
δ0

e−λrPr(y, f)dr

≤ C ′Uλ(y, f),

which implies that the resolvent measures {Uλ(x, ·) : x ∈ E} are equivalent (upon

interchanging the roles of x and y), i.e. there exists a reference measure m on E

such that

Uλ(x, dy) = uλ(x, y)m(dy).(4)

4. Application to sets of parabolic functions

In this section, we show some consequences of the existence of a parabolic Har-

nack inequality.

Suppose we have a sequence (un) of parabolic functions, converging to some

function u. It is not necessarily true that u is parabolic; indeed if X is a Markov

chain with q-matrix (qij), the parabolic functions are the positive solutions to the

equation

u(t, x) = u(b, x) +
∫ t

0

∑
y∈E

qxyu(b− s, y)ds.(5)

Then if un satisfies (5) for each n, we need something like the dominated conver-

gence theorem to assert that u = limn un also satisfies (5). A simple condition

which guarantees this is that, for each x ∈ E, the measure {y} 7→ qxy be supported

by only a finite number of points y. This means probabilistically that there is at

most a finite number of destinations for each jump of X. Note that if we assume
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that un is monotone (increasing or decreasing in n), then we do not need conditions

on X.

Bounded Jump Condition: For each compact set K ⊂ E, there exists an-

other compact set K ′ ⊂ E such that

Px(XTKc ∈ K
′, ζ > TKc) = 1, x ∈ K,

where TKc = inf{t > 0 : Xt /∈ K} is the first exit time from K.

As remarked above, this assumption holds for Markov chains with bounded

jumps, for we can take

K ′ = {y : qxy 6= 0, x ∈ K}.

The assumption also holds for diffusion processes, for we can take K ′ = K on

account of the continuity of the sample paths. Finally, it obviously holds for the

spacetime process X whenever it holds for the corresponding process X. We then

have the following

Lemma 9. Let X satisfy the Bounded Jump Condition. If (un) is a sequence of

parabolic functions which converges boundedly on compacts to a function u, then u

is itself parabolic.

Proof. Let D denote a compact subset of E, and put T = inf{r > 0 : Xr /∈ D}.

Since un is parabolic,

un(t, x) = E(t,x)(un(XT ), ζ > T ).

Moreover, by the Bounded Jump Condition, XT belongs to some compact set

D′ a.s. P(t,x). Thus un(XT ) is uniformly bounded a.s. , and using the bounded

convergence theorem we can let n → ∞ on both sides of the equation. Thus u is

itself parabolic.

Besides the assumptions of Section 2, we suppose now that there exists a σ-finite

reference measure m on E for the transition semigroup:

Ex(f(Xt), ζ > t) =
∫
pt(x, y)f(y)m(dy), f ≥ 0.(6)
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This assumption guarantees the existence of a reference measure for the resolvent

of the spacetime process X on E. Indeed, we have the analogue of (4),

E(s,x)

∫ ζ

0

e−λtf(Xt)dt =
∫
E

e−λ(t−s)1(−∞,s](t)pt−s(x, y)f(t, y)dtm(dy).

Recall that a set of potential zero is a set in which the Markov process spends

Lebesgue zero time.

Theorem 10. Suppose that the parabolic Harnack inequality holds together with

(6) and the Bounded Jump Condition. Let (un) be any set of parabolic functions

in (a, b), b < ∞, such that there exists a normalizing measure ν supported on

(b,∞)× E with

sup
n

∫
un(t, x)ν(dt× dx) = 1.(7)

There then exists a subsequence un(k) and a function u, parabolic in (a, b), such that

un(k) converges to u except on a set of potential zero, and boundedly on compact

subsets of (a, b)× E.

Proof. Since the (un) are parabolic, they are excessive for X. Consequently, by (6)

(see Dellacherie and Meyer, 1987, Chapter XII, Lemma 94, p.81), there exists an

excessive function u and a subsequence un(k) converging to u except on a set of

potential zero. By the parabolic Harnack inequality, if K ⊂ (a, b)× E is compact,

we have

sup
(t,x)∈K

sup
k
un(k)(t, x) ≤ C,

and consequently the convergence is bounded on compacts. Note that u equals

û(x) = lim k→∞un(k), except on the set of potential zero. Applying Lemma 9, we

see that û is the desired parabolic function.

Note that for Markov chains, the convergence of un(k) to u can easily be shown

to occur everywhere, not merely outside a set of potential zero.
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