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Abstract. We consider the task of simulating efficiently from the poste-

rior distribution over weight space of a feed-forward neural network using

a Langevin-Metropolis sampler, given a finite data set. It is shown that as

the number N of hidden neurons increase, the proposal variance must scale

as N−1/3 in order to get convergence of the underlying discretized diffusions.

This generalizes previous results of Roberts and Rosenthal (1998) for the i.i.d.

case, shows robustness of their analysis, and has also practical implications.

1. Introduction

When solving non linear regression or classification problems by means of neural

networks, It is well known that one must control carefully the complexity of the

model (number of nodes of the network) with respect to the amount of training

data at disposal, this in order to avoid overfitting, and hence bad or poor gener-

alization performance (see e.g. Haykin, 1999, and updated references therein). To

handle this central issue in learning theory researchers have focused their efforts

on comparing the network’s theoretical and empirical abilities to generalize, and

giving quantitative estimates for the discrepancy between these two quantities in

the worst case, regardless of the nature of the source generating the data.

At least in case of networks having a treshold activation function these explicit

bounds depend on a finite parameter, the Vapnik-Chervonenkis dimension for the

family of functions which can in principle be realized by the network. It is shown

(Vapnik, 1996, Bishop, 1996) that this discrepancy vanishes in the limit as the

available training data increase without bound. When however the amount of

Date: March, 1999.

1991 Mathematics Subject Classification. Primary 60J, Secondary 60F.

Key words and phrases. Neural Networks, Bayesian Learning, Markov Chain Monte Carlo,

Hastings-Metropolis, Langevin Diffusion, Propagation of Chaos.

1



2 L.A. BREYER, M. PICCIONI, AND S. SCARLATTI

data stays limited (as in real applications), practical experience suggests that good

generalization can be obtained with training sets much smaller than those required

by theory. Thus in some cases, regular theory can lead to overfitting.

It should also be noted that these theoretical results usually apply to networks

with treshold activation functions. In practice, smooth activation functions are

generally used when implementing back propagation (gradient descent) to search for

the best set of weights on the nodes of the network. The corresponding theoretical

analysis becomes then much more involved (Devroye, Gyorfi and Lugosi, 1996).

A different approach, which avoids the overfitting problem, consists in using a

Bayesian methodology (Bishop, 1996, chap. 10, Neal, 1996, and references therein).

Here, instead of searching for optimal weights to be fixed for all time, one lets the

weights fluctuate. Given a finite observed data set, a prior distribution over weight

space is applied and one gets, via Bayes’ theorem, an a posteriori distribution over

weights.

For a single layer network, this may be described more precisely as follows:

Let a1, . . . , an ∈ Rd be the input data, and denote the corresponding output data

z1, . . . , zn ∈ R. We set H : Rd+1 → R
n,

Hk(y0, . . . , yd) = y0g
(
〈ak, (y1, . . . , yd)〉

)
, g sigmoid function, k = 1, . . . , n,

and thus the posterior with N neurons is in the form [?? more detailed deriv here

??]

πN (dx) = C−1
N exp

( N∑
i=1

〈z,H(xi)〉 −
1

2N

N∑
i,j=1

〈H(xi),H(xj)〉
) N⊗
i=1

µ(dxi),(1)

The distribution πN now expresses the probability that a configuration x =

(x1, . . . , xN ) of weights generated the training data. We stress that here, the size

of the data set stays finite, and we are interested in analysing the behaviour of

the network (i.e. the above distribution πN ) as the number of nodes N increases.

There are many reasons for studying such a limit (see Neal, 1996): firstly, real life

problems of great complexity tend to require networks with a very large number

of nodes. Secondly, if the number of nodes is allowed to grow without bound, feed

forward neural networks have been shown to be good universal approximators (see

Cybenko, 1989, Barron 1993). Finally, the infinite network limit gives insight into
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the properties of different choices of prior distributions over weights, touching upon

a delicate aspect of the Bayesian approach (see Neal, 1996, chap.2).

In our first result (Theorem 1), we show the propagation of chaos for the family of

distributions (1), as N →∞. Since the model is of mean field type, our result is not

unexpected, but since the functionH is unbounded, standard results (e.g. Kusuoka,

199?) cannot be applied directly. The implication for the neural network is that

in the limit, any finite collection of weights behaves as if the individual weights

had been draws independently from a single distribution π. This distribution is a

member of the exponential family generated by H, which depends on the activation

function, and the prior µ. Our second result (Theorem 2) is mainly of a technical

nature, and is used in the proof of Theorem 3.

Once the posterior has been specified in the form (1), the problem remains of

simulating efficiently from it. This is the essential step for predicting the expected

values of the response variables using Markov Chain Monte Carlo integration. Here,

one defines a Markov chain X(N)
t which is guaranteed to have πN as a limiting dis-

tribution. Consequently, for any given function g of the responses, we can estimate

1
T

T∑
t=1

g(Xt)→
∫
g(x)πN (x)dx as T →∞.(2)

What is more, estimates of the accuracy achieved are obtainable by statistical

means, usually the (Markov chain) Central Limit Theorem together with a hypoth-

esis test.

Designing the Markov chain X
(N)
t for the target distribution πN is an easy

matter with the Hastings-Metropolis method. However, the enormous flexibility

afforded also brings with it a question about the most efficient Markov chain to

use. In this paper (Theorem 3), we shall analyse one such chain, the Metropolis

adjusted Langevin algorithm, defined below. One way of thinking about it is as a

gradient descent method coupled with a random walk, so as to allow escapes from

local extrema of the density. Considering that most neural networks implement

some form of back propagation (gradient descent), this algorithm offers a simple

migration path to individuals wanting to try the Bayesian approach.

We now specify the algorithm X
(N)
t . We shall describe some asymptotics af-

terwards, together with a discussion of how to tune the free parameter so as to

optimize the speed of convergence of the estimates (2).
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For a given distribution πN in the form (1) and which has a density on (Rn)N

with respect to Lebesgue measure, to be denoted πN (x), the Metropolis-adjusted

Langevin algorithm consists of a Markov chain X(N)
t whose stationary distribution

is πN (x)dx, and which is of Metropolis-Hastings type: moves are first proposed,

and then accepted or rejected by a simple test (see Tierney, 1994, Roberts and

Smith, 1994). For reference, we list the details of its implementation:

Choose X(N)
0 arbitrarily. Given X

(N)
t , to compute X(N)

t+1 , first generate

Yσ = X
(N)
t + σW +

σ2

2
∇ log πN (X(N)

t ),(3)

where W is a standard Gaussian on (Rn)N , independent of X(N)
t , and therefore the

law of Yσ given X
(N)
t = x is proportional to

(4) qN (x, y) = exp
(
− 1

2σ2

∥∥∥∥y − x− σ2

2
∇ log πN (x)

∥∥∥∥2)

= exp
(
− 1

2σ2

N∑
i=1

∥∥∥∥∥∥yi − xi − σ2

2

(
〈z,∇U(xi)〉 −

1
N

N∑
j=1

〈∇H(xi),H(xj)〉
)∥∥∥∥∥∥

2)
.

where U(x) = 〈z,H(x)〉+log dµ/dx. Finally, the proposal Yσ is accepted or rejected:

X
(N)
t+1 =

Yσ if πN (Yσ)qN (Yσ, X
(N)
t ) > ξ · πN (X(N)

t )qN (X(N)
t , Yσ),

X
(N)
t otherwise.

(5)

where ξ ∼ U [0, 1].

With the algorithm defined as above, we can now generate as many steps as

desired to produce accurate Monte Carlo estimates as in (2). Note that in practice,

the partial sums do not start from t = 0, but typically from some large value

t = t0 � 1, which ensures that the effect of the (arbitrary) initial values X(N)
0 is

countered. Indeed, the positive recurrence of the chain ensures that P(X(N)
t0 = x) ≈

πN (x) if t0 is sufficiently large, and the values of the chain prior to t0 are usually

discarded.

For purposes of analysis, we shall therefore assume from now on that X(N)
0 ∼ πN .

Our last result, Theorem 3, is a diffusion approximation, as N →∞. We show that

if the variance σ2 = `2/N1/3, then for any finite number of nodes 1, . . . , k say, the

processes

(X(N),1

[sN1/3]
, . . . , X

(N),k

[sN1/3]
: 0 ≤ s ≤ T )
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converge weakly to a diffusion process Z = (Z1
s , . . . , Z

k
s : 0 ≤ s ≤ T ) whose form

we give explicitly, and which has the stationary distribution π⊗k, where π is given

by Theorem 1. An implication of this result is that

1
TN1/3

TN1/3∑
s=1

g(X(N)
s )⇒ 1

T

∫ T

0

g(Zs)ds,(6)

if g is bounded and continuous and depends only on a finite number of nodes. This

may be loosely interpreted as follows: The Monte Carlo estimate of
∫
g(x)πN (x)dx

requires a number of iterations proportional to N1/3. The proportionality factor is

the time required to get convergence on the right of (6), and depends on the mixing

properties of the diffusion Z. This in turn depends on the value of `, through a

function v(`) which we compute explicitly. By finding the value ˆ̀ which maximizes

v(`), we obtain the diffusion process Z which mixes the fastest among all possible.

We can give an analytic expression for ˆ̀, but this is in practice useless since it cannot

be computed easily (except by Monte Carlo methods, which defeats somewhat the

purpose). Fortunately, as in Roberts and Rosenthal (1997), the optimal mixing

rate is obtained for a choice ˆ̀ corresponding to an average acceptance probability

PπN (X(N)
t+1 6= X

(N)
t ) ≈ 0.574.Thus it suffices to monitor the acceptance rate and

tune ` until it equals 0.574.

2. Statement of the main result

In Propositions 1 and 3 below, we work with a general mean field model of the

form

πN (dx) = C−1
N exp

( N∑
i=1

〈z,H(xi)〉 −
1

2N

N∑
i,j=1

〈H(xi),H(xj)〉
) N⊗
i=1

µ(dxi),

where u is a (not necessarily bounded) interaction function. In order to prove

the first limiting result, we need to introduce the exponential family of probability

measures on Rn generated by µ and u, which is defined by

µθ(dx) = e〈θ,H(x)〉−K(θ)µ(dx), θ ∈ Θ

where K(θ) = log
∫
e〈θ,H(x)〉µ(dx) is the cumulant generating function of u under

µ. We assume that K is finite only in an open set Θ of Rn. Consider now the

strictly convex function J(θ) = 1
2 ‖θ‖

2 +K(θ)− 〈z, θ〉, where K is extended to the

complement of Θ by setting its value equal to +∞. The function has a unique
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minimum θ∗ = θ∗(z) in Rn, as it is lower semicontinuous with compact level sets.

We can now state

Proposition 1. Whenever f : (Rn)∞ → R is a local function (i.e. depends on only

a finite number of components) such that
∫
etfdπ⊗∞ <∞ for t ∈ (−ε, ε), then

lim
N→∞

∫
fdπN =

∫
fdπ⊗∞ (propagation of chaos),

where π = µθ∗ .

Proof. Observe that θ∗ is the unique solution of the equation

θ +∇K(θ) = z,(7)

which implies by the properties of exponential families, that

θ∗ = z −
∫
Hdπ.(8)

We can now easily bound the Kullback-Leibler divergence

D(πN‖π⊗N ) =
∫

log(dπN/dπ⊗N )dπN .

In fact, by using (8), and setting H̃(x) = H(x)−
∫
Hdπ,

log(dπN/dπ⊗N ) = logC−1
N +NK(θ∗) +

N∑
i=1

〈z − θ∗,H(xi)〉 −
1

2N

N∑
i,j=1

〈H(xi),H(xj)〉

= logC−1
N +NK(θ∗) +

N

2

∥∥∥∥∫ udµ

∥∥∥∥2

− N

2

(∥∥∥∥∫ udµ

∥∥∥∥2

+ 〈
N∑

i,j=1

H(xi)/N,H(xj)/N〉 − 2
N∑
i=1

〈H(xi)/N,
∫
udπ〉

)

= log C̃N +
(
−1

2

∥∥∥∥∥ 1√
N

N∑
i=1

H̃(xi)

∥∥∥∥∥
2)

Now clearly

log C̃N = − log
∫

exp
(
−1

2

∥∥∥∥∥ 1√
N

N∑
i=1

H̃(xi)

∥∥∥∥∥
2) N⊗

i=1

π(dxi),

By the Central Limit Theorem, the right side above is therefore bounded, uniformly

in N , by some constant M say, from which D(πN‖π⊗N ) ≤M . It follows that if we
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denote by πN,k the marginal of πN for the first k components, then an inequality

of (Csiszar, 1984, p.112) gives

D(πN,k‖π⊗k) ≤ 1
[N/k]

D(πN‖π⊗N ) ≤ M

[N/k]
,

and now the stated convergence follows by (Csiszar, 1975, Lemma 3.1).

In Proposition 3, we shall use the following technical lemma.

Lemma 2. For any nonnegative definite matrix A, the convex conjugate of z 7→
1
2 〈z,Az〉 is given by

M∗(z) =


1
2 〈w,A

−w〉 if w ∈ RanA

+∞ otherwise,

where A− is the pseudo-inverse of A.

Proof. Let A = U tLU with L a diagonal matrix with the diagonal elements equal

to the eigenvalues in decreasing order. By definition,

M∗(z) = sup
θ

(〈z, θ〉 − 1
2
〈θ,Aθ〉) = sup

w
(
s∑
i=1

viwi −
1
2

s∑
i=1

λiw
2
i )

where v = Uz. If there exists i0 such that λi0 = 0 and vi0 6= 0 (which happens if

and only if z /∈ RanB) it is immediately seen that M∗(z) = +∞. Otherwise the

function between round brackets has a maximum wi = vi
λi

for i such that λi > 0,

wi = 0 otherwise. Finally it is easily seen that

M∗(z) =
1
2

∑
i:λi>0

v2
i

λi
=

1
2
〈z,A−z〉

for z ∈ RanA.

Proposition 3 (Moderate Deviations). For any function g : Rn → R
m satisfying∫

e〈θ,g〉dπ < ∞ in a neighbourhood of θ = 0, if λN → ∞ is a sequence such that

λ2
N/N → 0, then

πN

(∣∣∣∣∣ 1
N

N∑
i=1

g(xi)−
∫
gdπ

∣∣∣∣∣ > λN/
√
N
)
≤ e−cλ

2
N+o(λ2

N ),

where c > 0 is a constant and the limiting distribution π is given by Theorem 1.
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Proof of Theorem 2. Define g̃(xi) = g(xi)−
∫
gdµ and

(ZN , YN ) = (λN
√
N)−1

N∑
i=1

(g̃(xi), H̃(xi)).

Now it is easy to compute (Dembo and Zeitouni, 1998)

Λ(θ, ψ) = lim
N→∞

log
∫

expλ2
N (〈θ, ZN 〉+ 〈ψ, YN 〉)dπ⊗N

=
1
2
〈(θ, ψ),Σ(θ, ψ)〉

where Σ is the covariance matrix of (g̃(x), H̃(x)) under π. By applying the Gärtner-

Ellis theorem and Lemma 2 below, we prove that (ZN , YN ) satisfies an LDP with

speed λ2
N and rate function

J(z, y) =


1
2 〈(z, y),Σ−(z, y)〉 if (z, y) ∈ RanΣ

+∞ otherwise.

We want to prove the same result for the sequence ZN under πN . Decompose Σ

into blocks as

Σ =


Σ11

... Σ12

. . . . . . . . . . . .

Σ21

... Σ22

 =


∫
g̃g̃tdπ

...
∫
g̃ũtdπ

. . . . . . . . . . . . . . . . . . . .∫
ũg̃tdπ

...
∫
ũũtdπ


and write

Λ̃N (θ) = log C̃−1
N

∫
exp
(
λ2
N (〈θ, ZN 〉 −

1
2
‖YN‖2)

)
dπ⊗N ,

we apply Varadhan’s Lemma (Dembo and Zeitouni, 1998, Theorem 4.3.1, p.137)

with the continuous function ϕ(z, y) = 〈θ, z〉 − 1
2 ‖y‖

2, which satisfies the moment

condition

limN→∞
1
λ2
N

log
∫

exp
(
aλ2

Nϕ(ZN , YN )
)
dπ⊗N

≤ limN→∞
1
λ2
N

log
∫

exp
(
aλ2

N 〈θ, ZN 〉
)
dπ⊗N

= limN→∞
N

λ2
N

log
∫

exp
(
λN
N
〈aθ, g̃(x1)〉

)
π(dx1)

= limN→∞
N

λ2
N

(
1 +

λ2
Na

2

2N
〈θ,Σ11θ〉+ o(λ2

N/N)
)
<∞,
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for any constant a. Since C̃N is bounded in N , we obtain

Λ̃(θ) := lim
N→∞

1
λ2
N

Λ̃N (θ) = lim
N→∞

1
λ2
N

log
∫

expλ2
Nϕ(ZN , YN )dπ⊗N

= sup
z,y
{ϕ(z, y)− J(z, y)}.

In order to maximize the right hand side above, write (z, y) as Σ(u, v), without loss

of generality since J is equal to +∞ out of the range of Σ. Now

sup
z,y
{ϕ(z, y)− J(z, y)} = sup

u,v
{〈θ,Σ11u+ Σ12v〉 −

1
2
‖Σ21u+ Σ22v‖2

− 1
2

(〈u,Σ11u〉+ 〈v,Σ22v〉+ 2〈u,Σ12v〉)}.

The function to be maximized in concave in (u, v) and it is immediately checked

that (−θ, (I + Σ22)−1Σ21θ) is a stationary point. Substituting this back into the

above expression, we finally arrive at

Λ̃(θ) =
1
2
〈θ,Bθ〉,

where B = Σ11 −Σ12(I + Σ22)−1Σ21. In order to apply the Gartner Ellis theorem,

we need only check that B is nonnegative definite, and to apply Lemma 2: Let

A = Σ12Σ−22, where the superscript − is used to denote the pseudo-inverse of Σ22.

Since Ker[Σ22] = Ker[Σ12], we have Σ12 = AΣ22. As a consequence,

Varµ[g(xi)−AH(xi)] = Σ11 − Σ12Σ−22Σ21 ≥ 0.

Now consider the difference

D = Σ12Σ−22Σ21 − Σ12(I + Σ22)−1Σ21 = Σ12(Σ−22 − (I + Σ22)−1)Σ21,

and notice that the matrix between rounded brackets is nonnegative definite on

RanΣ22. But since Ran[Σ21] ⊂ RanΣ22 (as a consequence of the inclusion KerΣ22 ⊂

KerΣ12), D is nonnegative definite, and hence so is B.

We shall need the following assumptions to prove our main convergence result.

(A): The functions H(x), U(x) ≡ log(dµ/dx) + 〈z,H(x)〉 and their derivatives

are smooth, with at most polynomial growth in the variable x.

(B): The prior distribution µ has a finite moment generating function in some

neighbourhood of the origin.
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In order to ensure that the limiting process is well defined we need to enforce (A)

in the following way:

(C): The functions H ′(x) and U ′(x) have at most linear growth.

Theorem 4. Let {Zit : i = 1, 2, . . . } be independent copies of the process Zt which

is the solution to the SDE

(9) dZt = v(`)1/2dBt +
(
∇U(Zt) − 〈∇H(Zt),

∫
Hdπ〉

)
v(`)dt, Z0 ∼ π,

where v = v(`) = 2`2Φ(−`τ/2) and τ is a suitable constant depending on π. This

process is well defined under condition (C). If X(N)
t = (X(N),1

t , . . . , X
(N),N
t ) is the

Metropolis-adjusted Langevin algorithm defined by (5), with X
(N)
0 ∼ πN and jump

size σ2 = `2/N1/3, we have the weak convergence result

(
X

(N),1

tN1/3 , . . . , X
(N),k

tN1/3 : t ∈ [0, T ]
)
⇒
(
Zit : t ∈ [0, T ], i = 1, . . . , k

)
,(10)

for any integer k.

The rest of the paper is devoted to the proof of Theorem 4. For the sake of

simplicity, we take n = 1 below. The changes for the general case will affect only

the notation.

3. A quantitative CLT for the acceptance ratio.

We begin with the following preliminary remarks. Below, for any f : Rk → R

and any t ∈ (Rk)N , we shall write ENf(t) = 1
N

∑N
i=1 f(ti). From the definition (3)

we have

Yσ,i(x,W ) = Yi = xi + σWi +
σ2

2

(
U ′(xi)−H ′(xi)ENH(x)

)
.(11)
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Now define

Gσ,N (x,W ) = log
πN (Yσ)qN (Yσ, x)
πN (x)qN (x, Yσ)

= log πN (Yσ(x))− log πN (x)

+
1
2

[
‖W‖2 −

∥∥∥W +
σ

2
(
∇ log πN (Yσ(x)) +∇ log πN (x)

)∥∥∥2]
= N(ENU(Y )− 1

2
ENH(Y )2 − ENU(x) +

1
2
ENH(x)2)

− 1
2
σN [EN (U ′(Y )W ) + EN (U ′(x)W )− EN (H ′(Y )W )ENH(Y )

− EN (H ′(x)W )ENH(x)] +
1
8
σ2N [ENU ′(Y ) + ENU

′(x)

− ENH ′(Y )ENH(Y )− ENH ′(x)ENH(x)]

(12)

where Y = Yσ(x,W ) and we have used the notation

ENg(x)h(Y )W l =
1
N

N∑
i=1

g(xi)h(Yi)W l
i .

In order to study the asymptotic behaviour of the function Gσ,N , we wish to

expand it into a Taylor series with a suitable number of terms. The following

lemma, which we state without proof, is the result of a tedious, but straightforward

computation.

Lemma 5. The first two derivatives of Gσ,N (x,W ) vanish at σ = 0. Consequently,

we have the Taylor expansion

Gσ,N (x,W ) =
6∑
k=3

σkgk,N (x,W ) +
1
6!

∫ σ

0

(σ − u)6 d
7

du7
Gu,N (x,W )du,(13)

where gk,N (x,W ) = dk

duk
Gu,N (x,W )(0) for k = 3, . . . , 6.

The main result of this section is that, as N → ∞, a Central Limit Theorem

holds for Gσ,N (x,W ):

Proposition 6. Choose σ = `/N1/6. Then there exist sets FN ⊂ R
N , with

πN (F cN ) = o(N−k) for any k > 0 such that

lim
N→∞

Nβ sup
x∈FN

sup
u

∣∣∣P(Gσ,N (x,W ) ≤ u
)
− Φ−`2τ2/2,`2τ2(u)

∣∣∣ = 0,(14)
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where β > 0 is sufficiently small, Φm,s2(u) denotes the cumulative distribution

function of a N (m, s2) random variable, and

(15) τ2 =
1

144
(9E(ψ′′2(X)ψ′2(X)) + 18E(ψ′(X)ψ′′(X)ψ′′′(X)) + 15E(ψ′′′2(X)))

− 18(E(H ′′(X) +H ′(X)ψ′(X))E(H ′(X)(ψ′′′(X) + ψ′(X)ψ′′(X))

+ 9E(H ′2(X))(E(H ′′(X) +H ′(X)ψ′(X))2).

with ψ = U −H
∫
Hdπ.

Proof. To reduce the burden of notation, we set ` = 1 in the following. By (Petrov,

1995, Lemma 1.9, p.20) and (13), we have, using the Taylor expression from Lemma

5, and writing Φ = Φ0,1 for simplicity,

(16)

sup
u

∣∣P((Gσ,N + τ2/2)/τ ≤ u
)
− Φ(u)

∣∣ ≤ sup
u

∣∣∣P(N−1/2g3,N (x,W )/τ ≤ u
)
− Φ(u)

∣∣∣
+ P

(
N−2/3 |g4,N (x,W )| > τεN

)
+ P

(
N−5/6 |g5,N (x,W )| > τεN

)
+ P

(∣∣N−1g6,N (x,W ) + τ2/2
∣∣ > τεN

)
+ P

[∣∣∣∣∣ 1
6!

∫ N−1/6

0

(N−1/6 − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣∣ > τεN

]
+

5τεN√
2π

,

where Φ(u) is the standard Gaussian distribution function. Lemma 7 gives the

bound

(17) sup
u

∣∣∣P(N−1/2g3,N (x,W )/τ ≤ u
)
− Φ(u)

∣∣∣ ≤ ( 1√
N

+
1

ε2NN

)
F2

(
ENφ2(x)

)
+ hτ (F3(ENφ3(x))) + εN/

√
2π,

where hτ (x) =
∣∣∣1 ∨ √xτ ∣∣∣ ∣∣∣1− τ√

x

∣∣∣ is a continuous function vanishing at τ2 = F3(Eφ3(X)).

By Lemma 10 in the Appendix, we have gk,N (x,W ) = NFk(ENrk(x,W )), where

Fk and rk are as in Lemma 8, k = 4, 5, 6.
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Replacing in the formulas of Lemma 10 the empirical averages with expectations

with restpect to π × P, the reader can check that

F4(
∫
r4dπdP) = − 1

24
{

[3E(ψ′′(X)ψ′2(X)) + 3E(ψ′′2(X)) + 6E(ψ′′′(X)ψ′(X))

+ 3E(ψ′′′′(X))]− ([H ′(X)ψ′(X)−H ′′(X)])2
}

= − 1
24

[3c
∫

(eψψ′′)′′dx− (c
∫

(eψH ′)′dx)2] = 0.

where X has the density π(x) = ceψ(x) and c = eK(θ∗). The last equality is obtained

since both the summands are zero, by integration by parts. In fact by assumptions

(A) and (B), (eψf)(k) is integrable whenever f is any linear combination of deriva-

tives of H and U , k = 1, 2, 3, . . . . This implies that

lim
|x|→∞

(eψ(x)f(x))(k−1) = 0,

otherwise (eψf)(k) is not integrable. Next, F5(
∫
r5dπdP) = 0 since each monomial

in it contains at least one factor which is an odd power of W , hence it has mean

zero. Finally,

F6(
∫
r5dπdP) = − 1

1440
{

45E(ψ′′2(X)ψ′2(X)) + 60E(ψ′′′(X)ψ′3(X))

+ 270E(ψ′′′(X)ψ′′(X)ψ′(X)) + 135E(ψ′′′2(X))

+ 180E(ψ′′′(X)ψ′2(X)) + 180E(ψ′′′(X)ψ′′(X))

+ 180E(ψ′′′′′(X)ψ′(X)) + 60E(ψ′′′′′′(X))

− 90[E(H ′′(X) +H ′(X)ψ′(X))E(H ′(X)(ψ′′′(X) + ψ′(X)ψ′′(X)))]

− 90[2E(H ′′(X)ψ′2(X)) + 2E(H ′′(X)ψ′′(X)) + 4E(H ′′′(X)ψ′(X))

+ E(H ′′′′(X))]E(H ′′(X) +H ′(X)ψ′(X)) +

+ 45E(H ′2(X))(E(H ′′(X) +H ′(X)ψ′(X))2)
}

= − 1
1440

{
(45E(ψ′′2(X)ψ′(X)2) + 90E(ψ′(X)ψ′′(X)ψ′′′(X))

+ 75E(ψ′′′2(X)))− 90E(H ′′(X) +H ′(X)ψ′(X))

E(H ′(X)(ψ′′′(X) + ψ′(X)ψ′′(X))) +

45E(H ′2(X))E(H ′′(X) +H ′(X)ψ′(X))2
}

− 60
1440

{
E(ψ′′′(X)ψ′3(X)) + 3E(ψ′(X)ψ′′(X)ψ′′′(X))
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+ E(ψ′′′2(X)) + 3E(ψ′′′′(X)ψ′2(X)) +

+ 3E(ψ′′′′′(X)ψ′(X)) + E(ψ′′′′′′(X))
}

+
90

1440
{

2E(H ′′(X)ψ′2(X)) + 2E(H ′′(X)ψ′′(X))

+ 4E(H ′′′(X)ψ′(X)) + E(H ′′′′(X))][E(H ′′(X) +H ′(X)ψ′(X))
}
,

and this simplifies to

F6(
∫
r5dπdP) = −τ

2

2
,

because the first term in curly braces equals − τ
2

2 by (15), the second term is

proportional to

E(ψ′′′(X)ψ′3(X) + 3ψ′(X)ψ′′(X)ψ′′′(X) + ψ′′′
2(X)

+ 3ψ′′′′(X)ψ′2(X) + 3ψ′′′′′(X)ψ′(X) + ψ′′′′′′(X)

= c

∫
(eψψ′′′)′′′dx = 0,

and the third term in curly braces contains the multiplicative factor

E(H ′′(X) +H ′(X)ψ′(X)) = c

∫
(eψH ′)′dx = 0.

The last two displays equal zero by Assumptions (A) and (B), and integration by

parts.

Next, using Lemma 8 three times, we find that

P

(
N−2/3 |g4,N (x,W )| > τεN

)
= P

(
N1/3 |F4(ENr4(x,W ))| > τεN

)
≤ 1
N1−4/6ε2N

F4

(
ENφ4(x)

)
(18)

P

(
N−5/6 |g5,N (x,W )| > τεN

)
= P

(
N1/6 |F5(ENr5(x,W ))| > τεN

)(19)

≤ 1
N1−2/6ε2N

F5

(
ENφ5(x)

)
(20)

P

(∣∣N−1g6,N (x,W ) + τ2/2
∣∣ > τεN

)
= P

(∣∣∣∣F6(ENr6(x,W ))− F6(
∫
r6dπdP)

∣∣∣∣ > τεN
)

≤ 1
Nε2N

F6

(
ENφ6(x)

)
,(21)
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for x ∈ F̂N,k(εN ), where

F̂N,k(εN ) =
{
x :
∣∣∣∣ENβk(x)−

∫
rkdπdP

∣∣∣∣ < τεN
2
Nk/6−1

}
.

The remainder is estimated in Lemma 9 as

P

[∣∣∣∣∣ 1
6!

∫ N−1/6

0

(N−1/6 − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣∣ > τεN

]
≤ 1
εNN7/6

F7

(
ENφ7(x)

)
.

(22)

We now finish the proof of the theorem. Choose εN = N−α for α > 0 small

enough, and set

FN =
{
x :
∣∣∣∣ENφk(x)−

∫
φkdπ

∣∣∣∣ ≤ N−α,
k = 2, 3, 4, 5, 6, 7

}⋂(
∩k=4,5,6F̂N,k(N−1/12)

)
.

From Proposition 3 with λN = N1/2−2α, we deduce that πN (F cN ) = o(N−k) as

claimed. Using the bounds (17), (18), (20), (21), (22) and (16), we get that∣∣∣P(Gσ,N (x,W ) ≤ u
)
− Φ−`2τ2/2,`2τ2(u)

∣∣∣ = O(N−β).

The only term which needs to be discussed is the second one on the right hand side

of (17), where we use a Lipschitz estimate for hτ around x = τ2 and the explicit

form of the sets FN .

Notice that in the above proof, the form of the sets FN is suggested by the second

term appearing on the right hand side of (17). Proposition 3 was given precisely

to control the the probability of these sets.

Before proceeding with the proofs of those Lemmas needed for Proposition 6, we

set up some notational conventions. Let us define ψN : R×RN → R as

ψN (t;x) = U(t)−H(t)ENH(x),(23)

and write

(ENψN )(x) =
1
N

N∑
i=1

ψN (xi;x).

We also denote by ψ(k)
N the k-th derivative of ψN (t, x) with respect to t, and then

define ENψ
(k)
N similarly.
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We write D for the algebra of polynomials in the absolute value of derivatives of

H and U :

D = Algebra
{
f =

∣∣∣H(`)
∣∣∣q , f =

∣∣∣U (`)
∣∣∣q : ` = 0, 1, 2, . . . , q = 0, 1, 2, . . .

}
.

Lemma 7. There exist polynomials F2, F3, and vectors φ2, φ3 with components

in D, such that for any ε > 0,

sup
u

∣∣∣P(g3,N (x,W )/τ
√
N ≤ u

)
− Φ(u)

∣∣∣ ≤ ( 1√
N

+
1
ε2N

)
F2

(
ENφ2(x)

)
+ 1 ∨

√
F3(ENφ3(x))/τ · (1− τ/

√
F3(ENφ3(x))) + ε/

√
2π,

Proof. Let us define

XN =
√
N
(

3EN (ψ′′Nψ
′
N (x)W ) + EN (ψ′′′N (x)W 3)

− 3EN (H ′ψ′N (x))ENH ′(x)W − 3ENH ′′(x)EN (H ′(x)W ))

and YN = 3
√
NENH

′′(x)(W 2 − 1)ENH ′(x)W . From the expression of g3,N in the

Appendix we find that

1√
N
g3,N (x,W ) = XN + YN

The term YN has zero mean, and we bound its variance as follows:

EYN
2 =

9
N3

∑
i,j

H ′′(xi)2H ′(xj)2
E(W 2

i − 1)2W 2
j(24)

≤ Const
N

EN (H ′′)2EN (H ′)2.
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The expression XN is a sum of independent random variables, whose mean under

the measure P is zero. We compute its variance τ2
N directly as follows:

(25) τ2
N =

1
144

{
EN (9ψ′′N

2(x)ψ′N
2(x) + 18ψ′N (x)ψ′′N (x)ψ′′′N (x) + 15ψ′′′N

2(x))

− 18EN [H ′(x)ψ′N (x) +H ′′(x)]EN [ψ′N (x)ψ′′N (x)H ′(x) + ψ′′′N (x)H ′(x)]

+ 9ENH ′
2(x)(ENH ′′(x))2 + 18ENH ′′(x)EN (H ′(x)ψ′N (x))ENH ′

2(x)

+ 9ENH ′(x)2(EN (H ′(x)ψ′N (x)))2

+
1
N

[−36EN (ψ′′N (x)ψ′N (x)H ′′(x)H ′(x))− 48EN (ψ′′′N (x)H ′′(x)H ′(x))

− 12EN (ψ′N (x)ψ′′N (x)H ′(x)H ′′(x))− 48EN (ψ′′′N (x)H ′′(x)H ′(x))

+ 36EN (H ′(x)ψ′N (x))EN (H ′′(x)H ′2(x)) + 18EN (H ′2(x)H ′′(x))ENH ′′(x)

+ 36EN (H ′′2(x)H ′2(x))] + 72
1
N2

EN (H ′′2(x)H ′2(x))
}
.

Now, in order to get the representation τ2
N = F3(ENφ3(x)), we insert into the

above terms the explicit formula for ψN given in (23), expand the products and

rearrange terms.

By Proposition 3, we have τ2
N → τ2 in distribution, where τ2 is defined by (15)

in Proposition 6. Using the formula (Petrov, 1995, Lemma 1.9, p.20) again and a

simple estimate gives

sup
u
|P(XN + YN ≤ τu)− Φ(u)| ≤ sup |P(XN/τN ≤ u)− Φ(u)|+ 1 ∨ (τN/τ) · (1− (τ/τN ))

+ P(YN > ετ) + ε/
√

2π

and Esseen’s inequality (Petrov, 1975, Theorem 3, p.111) for XN/τN , Chebyshev’s

inequality and the estimate (24) for YN , we arrive at

sup
u

∣∣∣P(g3,N (x,W )/τ
√
N ≤ u

)
− Φ(u)

∣∣∣ ≤ 1√
N

Const
τ3
N

(
EN |ψ′′N (X)ψ′N (X)|3

+ EN |ψ′′′N (X)|3 + EN |H ′(X)|3 (EN |H ′(X)ψ′N (X)|3 + |H ′′(X)|3)
)

+ 1 ∨ τN/τ · (1− τ/τN ) +
Const
Nτ2ε2

ENH
′′2(x)ENH ′

2(x) + ε/
√

2π,

which is clearly in the form claimed.

Lemma 8. Let F : Rm → R be a polynomial and rh : R2 → R, h = 1, . . . ,m,

be of the form rh(x,W ) = bh(x)Wαh , where bh belongs to D. Then there exists a
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polynomial F̄ and a function r̄ ∈ D such that, for 0 ≤ γ < 1/2,

P

[
Nγ

∣∣∣∣F(ENr(x,W )
)
− F

(∫
rdπdP

)∣∣∣∣ > ε
]
≤ 1
N (1−2γ)ε2

F̄
(
EN r̄(x)

)
holds for all x ∈ F̂N , where

F̂N =
{
x :
∣∣∣∣ENβh(x)−

∫
rhdπdP

∣∣∣∣ < εN−γ/2K, h = 1, . . . ,m
}
,

K is a local Lipschitz constant for F in a neighbourhood of the point
∫
rdπdP and

βh(xi) = bh(xi)EWαh , h = 1, . . . ,m.

Proof. We first notice that, when x ∈ F̂N , we have

P

(
Nγ

∣∣∣∣F (ENr(x,W ))− F (
∫
rdπdP)

∣∣∣∣ > ε

)

≤ P

(
Nγ

∣∣∣∣F (ENβ(x,W ))− F (
∫
rdπdP)

∣∣∣∣ > ε/2

)
.

Now define the random variables Vh,i = rh(xi,Wi). These are clearly independent

and have respective means βh(xi). Now the difference

F
( 1
N

N∑
i=1

Vh,i, h = 1, . . . ,m
)
− F

(
ENβh(x), h = 1, . . . ,m

)
is a polynomial in the centered variables 1

N

∑N
i=1(Vh,i − βh(xi)), with coefficients

which are polynomials in the variables ENβh(x), as can be immediately seen by

taking a Taylor series centered in ENβh(x). We proceed to bound the second

moment of the generic monomials in this representation,

Mh1,...,hs = E

[( 1
N

N∑
i=1

Y
(h1)
i

)
. . .
( 1
N

N∑
i=1

Y
(hs)
i

)]2
,

where Y (h)
i = Vh,i − bh(xi). By using Lemma 11, we get the bound

Mh1,...,hs ≤
1
N
× Polynomial in empirical averages of elements in Dp,k.

The proof is completed by an application of Chebyshev’s inequality.

Lemma 9. Choose σ = 1/N1/6, then there exist a polynomial P and a function µ

with components in D such that

P

[∣∣∣∣ 1
6!

∫ σ

0

(σ − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣ > ε
]
≤ 1
εN7/6

P
( 1
N

N∑
i=1

µ(xi)
)
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Proof. By Markov’s inequality and Lemma 10, we have

P

[∣∣∣∣ 1
6!

∫ σ

0

(σ − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣ > ε
]

≤ 1
6!ε
E

∣∣∣∣∫ σ

0

(σ − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣
≤ 1

6!ε

∫ σ

0

(σ − u)6
E

∣∣∣∣ d7

du7
Gu,N (x,W )

∣∣∣∣ du
≤ 1

6!ε

∫ σ

0

(σ − u)6NE

∣∣∣∣∣
9∑
k=0

ukPk

(
ENρ`(x)ϕ`(Yu)W r` ; ` = 1, . . . ,m

)∣∣∣∣∣ du
≤ 1

6!ε

∫ σ

0

(σ − u)6N

9∑
k=0

ukE
∣∣∣Pk(ENρ`(x)ϕ`(Yu)W r` ; ` = 1, . . . ,m

)∣∣∣ du,
≤ 1

6!ε

∫ σ

0

(σ − u)6N
9∑
k=0

ukCk(1 + E |ENρ`(x)ϕ`(Yu)W r` |sk)du.

Now using Jensen’s inequality, we have the bound

|ENρ`(x)ϕ`(Yu)W r` |sk ≤ EN |ρ`(x)ϕ`(Yu)W r` |sk

≤ EN |ρ`(x)|sk |ϕ`(Yu)|sk |W r` |sk

≤ CEN (1 + |x|rk)sk(1 + |Yu|rk)sk(1 + |W r` |rk)sk

≤ C ′(1 + EN |x|tk + EN |Yu|tk + EN |W |tk)(26)

for some sufficiently large tk and constant C ′, by the arithmetic-geometric mean

inequality. From (11), we have

|Yu,i| ≤ |xi|+ u |Wi|+ (u2/2) |U ′(xi)|+ (u2/2) |H ′(xi)|

∣∣∣∣∣∣ 1
N

N∑
j=1

H(xj)

∣∣∣∣∣∣ ,
and replacing this into the estimate (26) gives

P

[∣∣∣∣ 1
6!

∫ σ

0

(σ − u)6 d
7

du7
Gu,N (x,W )du

∣∣∣∣ > ε
]

≤ Const
ε

∫ σ

0

(σ − u)6N
9∑
k=0

ukCk

[
1 +

∑
γ

uγPγ

(
EN |x| , EN |U ′(x)| , EN |H ′(x)| , EN |H(x)|

)]
du

≤ ConstNσ7

ε

∑
δ

σδP̃δ(EN |x| , EN |U ′(x)| , EN |H ′(x)| , EN |H(x)|)
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≤ ConstN7/6

ε
P (ENη)

where we first summed over a finite number of indices γ, and then integrated over

u, using the bound
∫ σ

0
(σ − u)6uγdu ≤ 26σ7+γ , to get the sum over δ. After

this, we bounded the derivatives of H and U by Assumption (A), and finally, we

simultaneously bounded all the polynomials P̃δ by a single, much larger polynomial

P . Upon substituting σ = 1/N1/6, we arrived at the stated form.

4. Proof of the convergence result

For a given configuration x ∈ (Rn)N , let us begin by expanding the discrete gen-

erator ANf(x) = E[f(X(N)
t+1 )− f(x) |X(N)

t = x] on a suitably smooth test function

f (C∞ with compact support) which moreover depends on only a finite set ∆(f)

of components. For the sake of simplicity, we suppose that f depends only on one

component xp.

(27) ANf(x) = E

[(
f(Yσ,p)− f(xp)

)
1 ∧ eGσ,N (x,W )

]
= E

[(
σf ′(xp)Wp +

σ2

2
Wpf

′′(xp)Wp

+
σ2

2
f ′(xp)(U ′(xp)−H ′(xp)ENH(x))

)
1 ∧ eGσ,N (x,W )

]
+ σ2r(σ, x),

where

r(σ, x) =
σ

3!
E

(
[f ′′′(Yσ̃)(W1 + σ̃(U ′(x1)−H ′(x1)ENH(x)))3

+3f ′′(Yσ̃)(U ′(x1)−H ′(x1)ENH(x))(W1+σ̃(U ′(x1)−H ′(x1)ENH(x)))]1∧eGσ̃,N (x,W )
)
,

where 0 ≤ σ̃ ≤ σ. Observe that if we define the set

F̃N =
{
x : |U ′(xp)| , |U ′′(xp)| , |H ′(xp)| , |H ′′(xp)| ≤ Nκ

}
,

for κ suitably small, then with σ = N−1/6, the remainder r(σ, x) goes to zero

uniformly for x ∈ F̃N ∩FN , as N →∞, so it is dropped from further consideration.

The bounds on the second derivatives in F̃N have been included for later purposes.
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If Γ is a smooth function of a real variable, Taylor’s formula gives

1 ∧ eΓ(1) = 1 ∧ eΓ(0) +
∫
{u:Γ(u)<0 and 0≤u≤1}

Γ′(u)eΓ(u)du

= 1 ∧ eΓ(0) +
k∑
i=1

Γ′(si)eΓ(si)(ti − si) +
k∑
i=1

∫ ti

si

∫ u

si

(
Γ′′(v) + Γ′(v)2

)
eΓ(v)dvdu

= 1 ∧ eΓ(0) +
k∑
i=1

Γ′(si)eΓ(si)(ti − si) +
k∑
i=1

∫ ti

si

(ti − v)
(

Γ′′(v) + Γ′(v)2
)
eΓ(v)dv,

where the sums are over a partition

{u : Γ(u) < 0, 0 ≤ u ≤ 1} = ∪ki=1(si, ti),

with 0 ≤ s1 < t1 ≤ s2 < · · · ≤ sk < tk ≤ 1. We apply this formula now to the

function Γ(u) = Gσ,N (x, uWp,Wpc), arriving at

(28) E(1 ∧ eGσ,N (x,W ) |Wp) = E(1 ∧ eGσ,N (x,W ) |Wp = 0)

+WpE

( k∑
i=1

d

d(siWp)
Gσ,N (x, siWp,Wpc)eGσ,N (x,siWp,Wpc )(ti − si) |Wp

)

+ E
( k∑
i=1

∫ ti

si

(ti − v)
(

Γ′′(v) + Γ′(v)2
)
eΓ(v)dv |Wp

)

We now substitute (28) into the expression (27), and obtain, placing all unwanted

terms into a remainder RN (x, f),

(29)
1
σ2
ANf(x) =

1
2
f ′′(xp)E(1 ∧ eGσ,N (x,W ) |Wp = 0)

+
1
2
f ′(xp)(U ′(xp)−H ′(xp)ENH(x))E(1 ∧ eGσ,N (x,W )) +RN (x, f).

Keeping only the leading order term in RN (x, f) (as the remaining ones can be

treated in a similar way), we have

RN (x, f) =

1
σ
f ′(xp)E

[
W 2
pE

( k∑
i=1

d

d(sWp)
Gσ,N (x, siWp,Wpc)eGσ,N (x,siWp,Wpc )(ti − si) |Wp

)]
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Observe that we can bound

(30)

∣∣∣∣∣E(
k∑
i=1

d

d(sWp)
Gσ,N (x, siWp,Wpc)eGσ,N (x,siWp,Wpc )(ti − si) |Wp

)∣∣∣∣∣
≤ E

(
sup
s≤1

∣∣∣∣ d

d(sWp)
Gσ,N (x, sWp,Wpc)

∣∣∣∣ |Wp

)
,

since Gσ,N (x,W ) is negative on ∪ki=1(si, ti). Let us write explicitly

d

d(sWp)
Gσ,N (x,W ) =

σ

2

(
U ′(Yp)−U ′(xp)−H ′(Yp)ENH(Y ) +H ′(xp)ENH(x)

)
− σ2

2

(
Wp(U ′′(Yp)−H ′′(Yp)ENH(Y )) +H ′(Yp)

1
N

N∑
i=1

WiH
′(Yi)

)
+
σ3

8

(
U ′′(Yp)−H ′′(Yp)ENH(Y )−H ′(Yp)ENH ′(Y )

)
,

then we can rewrite the right hand side of (30) as

E

(
sup
s≤1

∣∣∣∣ d

d(sWp)
Gσ,N (x, sWp,Wpc)

∣∣∣∣ |Wp

)
=

σ

2
E

(
sup
s≤1

∣∣∣U ′(Ỹσ,p)− U ′(xp)−H ′(Ỹσ,p)ENH(Ỹσ) +H ′(xp)ENH(x)
∣∣∣ |Wp

)
+SN (x,Wp),

where

Ỹσ,q =

xp + σsWp + σ2

2 (U ′(xp)−H ′(xp)ENH(x)) if q = p

Yσ,q if q 6= p.

For x ∈ F̃N ∩ FN , we have, using the fundamental theorem of calculus,

(31) E(W 2
pE(sup

s≤1

∣∣∣∣ d

dsWp
Gσ,N (x, sWp,Wpc)

∣∣∣∣ |Wp)) ≤

E

∣∣∣∣W 2
pE sup

s≤1

∣∣∣U ′(Ỹp)− U ′(xp)−H ′(Ỹp)ENH(Ỹ ) +H ′(xp)ENH(x)
∣∣∣ |Wp)

∣∣∣∣
≤ E

∣∣W 2
p

∣∣ sup
s≤1

∣∣∣U ′(Ỹp)− U ′(xp)∣∣∣+ E
∣∣W 2

p

∣∣ sup
s≤1

∣∣∣H ′(xp)−H ′(Ỹp)∣∣∣ |ENH(x)|

+ E
∣∣W 2

p

∣∣ sup
s≤1

∣∣∣H ′(Ỹp)∣∣∣EN ∣∣∣H(Ỹ )−H(x)
∣∣∣ .

Observe that, when T is either U ′, H ′ or H, we can write

T (Yp)−T (xp) =
σ2

2
(U ′(xp)−H ′(xp)ENH(x))

∫ 1

0

T ′(xp+
vσ2

2
(U ′(xp)−H ′(xp)ENH(x)))dv

+ σWp

∫ s

0

T ′(xp +
σ2

2
(U ′(xp)−H ′(xp)ENH(x)) + uσWp)du.
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By bounding the derivative of T with a suitable polynomial it is easily obtained

that for x ∈ F̃N ∩ FN we have

E sup
s≤1
|T (Yp)− T (xp)| ≤ σ · ConstNκr,

for some integer r, so that for σ = N−1/6 and x ∈ FN ∩ F̃N and κr small enough,

we find that

|T (Yp)− T (xp)| ≤ Const ·N−(1/6−κr).

By substituting this bound into (31), it is easy to see that for x ∈ FN ∩ F̃N ,

the right hand side is bounded by O(Nκr−1/6) uniformly over x. With similar

arguments, we can show that E(SN (x,Wp)W 2
p ) is bounded by o(Nκr−1/6) uniformly

over x ∈ FN ∩ F̃N .

Let us now define an operator A by

Af(x) =
`2

2
E(1 ∧ eN )

[
f ′′(xp) +

(
U ′(xp) − H ′(xp)

∫
Hdπ

)
f ′(xp)

]
,

where N is a Gaussian random variable with mean −τ2/2 and variance τ2. This is

the generator of the diffusion process Z described in (9), where v(`) = 2`2E(1∧eN ),

since the latter expected value is equal to Φ(−`τ/2) by a direct calculation.

With this definition, we have

(32)
∣∣σ−2
N ANf(x)− `−2Af(x)

∣∣
≤ 1

2
|f ′′(xp)|

∣∣∣E(1 ∧ eGσ,N (x,W ) |Wp = 0
)
− E

(
1 ∧ eN

)∣∣∣
+ |f ′(xp)| |U ′(xp)|

∣∣∣E(1 ∧ eGσ,N (x,W ))− E(1 ∧ eN )
∣∣∣

+ |f ′(xp)| |H ′(xp)|
(
|ENH(x)|

∣∣∣E(1 ∧ eGσ,N (x,W ))− E(1 ∧ eN )
∣∣∣

+
∣∣∣∣ENH(x)−

∫
Hdπ

∣∣∣∣ ∣∣E(1 ∧ eN )
∣∣)

In order to bound the above expression, we note that

∣∣∣E(1 ∧ eGσ,N (x,W ) |Wp = 0
)
− E

(
1 ∧ eGσ,N (x,W )

)∣∣∣
≤ E |Gσ,N (x, 0,Wpc)−Gσ,N (x,W )| .
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The right hand side goes to zero uniformly on the set F̃N∩FN , by arguments similar

to the above. The first term on the right hand side of (32) goes to zero uniformly

on the sets FN ∩ F̃N , since

∣∣∣E(1 ∧ eGσ,N (x,W ))− E(1 ∧ eN )
∣∣∣

≤ Const · sup
u

∣∣∣P(Gσ,N (x,W ) ≤ u
)
− Φ−`2τ2/2,`2τ2(u)

∣∣∣ ,
an estimate derived by integration by parts. In order to show that the remaining

terms tend to zero uniformly on those same sets FN ∩ F̃N , we only have to choose

κ in the definition of F̃N to be smaller than the β given in Proposition 6.

We conclude the proof by collecting the previous facts together. For any test

function f , we have shown that

lim
N→∞

sup
x∈FN∩F̃N

∣∣σ−2
N ANf(x)− `−2Af(x)

∣∣ = 0.(33)

Now suppose that X(N)
0 ∼ πN , and consider the probabilities

P

(
X

(N)

[N1/3t]
/∈ FN ∩ F̃N for some t ≤ T

)
≤ [N1/3T ]πN (x : x /∈ FN ∩ F̃N ),

where we have used the stationarity of πN . Then immediately by Proposition 6,

we see that

lim
N→∞

P

(
X

(N)

[N1/3t]
∈ FN ∩ F̃N for all t ≤ T

)
= 1.

Consequently, by (Ethier and Kurtz, 1986, Corollary 8.9, p.233), the weak conver-

gence (10) holds as stated. This ends the proof of Theorem 4.

5. Appendix

In this appendix, we list the terms in the Taylor expansion given in Lemma 5.

We begin with the following lemma:

Lemma 10. For h = 0, 1, 2, . . . , we have the representation

dh

dσh
Gσ,N (x,W ) = N

h+2∑
k=0

σkPk

(
ENρ`(x)ϕ`(Yσ)W r` ; ` = 1, . . . ,m

)
,(34)
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for some integer m, where ρ`, ϕ` ∈ D. In particular, for σ = 0, we have

g3,N (x,W ) = −N
12

(
EN (3ψ′′ψ′W + ψ′′′W 3)− 3EN (H ′W )EN (H ′ψ′N )

− 3EN (H ′′W 2)EN (H ′W )
)

Moreover,

g4,N = −N
24

(
EN (3ψ′′ψ′2+3ψ′′2W 2+6ψ′′′ψ′W 2+ψ′′′′W 4)−{3(ENH ′ψ′)(ENH ′ψ′)

+ 6(ENH ′′W 2)(ENH ′ψ′) + 3(ENH ′′W 2)(ENH ′′W 2)}+ δ4,N

)
and

g6,N = − N

1440

(
EN (45ψ′′2ψ′2 + 60ψ′′′ψ′3 + 90ψ′′′ψ′′ψ′W 2 + 180ψ′′′ψ′′ψ′

+ 45ψ′′′W 4 + 180ψ′′′′ψ′2W 2 + 60ψ′′′′ψ′′W 4 + 60ψ′′′′′ψ′W 4 + 4ψ′′′′′′W 6

− [90(ENH ′ψ′ψ′′)(ENH ′ψ′) + 180(ENH ′′ψ′
2)(ENH ′ψ′)

+90(ENψ′′′H ′W 2)(ENH ′ψ′)+90(ENH ′ψ′′ψ′)(ENH ′′W 2)+180(ENH ′′ψ′′)(ENH ′ψ′)

+90(ENψ′′′H ′W 2)(ENH ′′W 2)+360(ENH ′′′ψ′W 2)(ENH ′′ψ′)+180(ENH ′′W 2)(ENH ′′ψ′
2)

+180(ENH ′′W 2)(ENH ′′ψ′′W 2)+60(ENH ′′′′W 4)(ENH ′ψ′)+360(ENH ′′W 2)(ENH ′′′ψ′W 2)

+ 60(ENH ′′′′W 4)(ENH ′′W 2)] + [45(ENH ′
2)(ENH ′ψ′)(ENH ′ψ′)

+90(ENH ′
2)(ENH ′′W 2)(ENH ′ψ′)+45(ENH ′

2)(ENH ′′W 2)(ENH ′′W 2)]+δ6,N
)
,

where δ4,N and δ6,N are sums of monomials in empirical averages of functions

involving at least one odd power of W , that asymptotically have mean zero.

Proof. The representation (34) can be verified by induction, noting that it is true

for h = 0, by (12). The stated formulas are found by explicit computation.

Lemma 11. Define in Rr the vector valued, centered and independent random vari-

ables Y (j)
i = b(j)(xi)W

(j)
i , where W (j)

i are i.i.d. standard Gaussians for i = 1, . . . , r,

and j = 1, . . . , N . Then

(35) E

( r∏
j=1

( 1
N

N∑
i=1

Y
(j)
i

))2

≤

1
Nr

r∑
m=1

1
Nr−m

∑
|P|=m

( 1
N

N∑
h1=1

bA1(xh1)
)
· · ·
( 1
N

N∑
hm=1

bAm(xhm)
)
,
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where the sum is taken over partitions P =
{
A1, . . . , Am

}
of the set of repeated

indices I = {1, . . . , r, 1, . . . , r} such that I = ∪mk=1Ak and each Ak contains at least

two elements of I.

Proof. Begin by writing

E

[ r∏
j=1

( 1
N

N∑
i=1

Y
(j)
i

)]2 =
1
N2r

N∑
i1=1

· · ·
N∑
ir=1

N∑
k1=1

· · ·
N∑

kr=1

EY
(1)
i1
· · ·Y (r)

ir
Y

(1)
k1
· · ·Y (r)

kr
.

A summand in the last expression is zero as soon as there exists an index (i1, . . . , ir

or k1, . . . , kr) whose value is not repeated by another. This follows by the indepen-

dence and zero mean property of the Yi. Another way of rearranging this sum is

therefore as follows: partition the set I into a finite union I = A1∪ · · ·∪Am, where

each |Ak| ≥ 2 for each k. We write Y Aki =
∏
j∈Ak Y

(j)
i to simplify notation. Then

the sum on the left is bounded above in absolute value by

∑
P

∑
|P|=m

N∑
h1=1

· · ·
N∑

hm=1︸ ︷︷ ︸
hi 6=hk if k 6=i

E

∣∣∣Y A1
h1

∣∣∣ · · · ∣∣∣Y Amhm

∣∣∣ .(36)

Since the sum is over non repeating indices h1, . . . , hm, we have by independence

E

∣∣∣Y A1
h1

∣∣∣ · · · ∣∣∣Y Amhm

∣∣∣ = bA1(xh1) · · · bAm(xhm), where bAk(x) = E

∏
j∈Ak

[
b(x)W1

](j).
Now the summand in (36) is positive, so we can bound the sum above by a sum

over all (possibly repeating) indices h1, . . . , hm, and after rearrangeing the sums,

we obtain (35).
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