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Abstract. We describe some old and new methods for coupling the flow

of a discrete time Markov chain, provided its transition function is known.

Examples including Hastings-Metropolis and Gibbs samplers are given.

1. Introduction

Coupling constructions have been widely successful in tackling the problem of

determining when and how fast a Markov chain converges to its stationary distri-

bution (Lindvall, 1992, Meyn and Tweedie, 1993, Rosenthal, 199?, Roberts and

Tweedie, 199?). In this report, we shall present several new coupling constructions

for Markov chains whose transition probabilities are known to within a constant

factor.

Much of the success of coupling methods owes to the coupling inequality, which is

usually applied in the following form: let Xt and X ′t be two Markov chains defined

on a common probability space (Ω,F ,P). We assume that both chains have the

same transition probabilities, and that X ′t is started in the equilibrium distribution

π (assumed to exist). Then

sup
A∈F
|P(Xt ∈ A)− π(A)| ≤ P(T > t),(1)

where T = min{s : Xs = X ′s}. Consequently, if P(T <∞) = 1, the law of Xt must

converge in total variation to π, and we can give a rate of convergence if we study

the distribution of T . Note that such arguments are purely probabilistic. The proof

of (1) is so short that we repeat it here as a service to readers unfamiliar with it.
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Since the process X ′t is stationary, we have

P(Xt ∈ A)− π(A) = P(Xt ∈ A)− P(X ′t ∈ A)

= P(Xt ∈ A, T > t)− P(X ′t ∈ A, T > t),

as Xt = X ′t on {T ≤ t}. Consequently,

|P(Xt ∈ A)− π(A)| = |P(Xt ∈ A |T > t)− P(X ′t ∈ A |T > t)|P(T > t)

≤ P(T > t)

for any set A, for the distance between two numbers in [0, 1] cannot be greater than

one.

The problem we shall discuss in this report can be described as follows: We are

given a computer program (sometimes known as a stochastic recursive sequence)

for simulating a Markov chain with a specified set of transition probabilities from

any initial position in the state space. By modifying this program slightly, we can

ensure that two chains simulated from different initial locations have a positive

chance of coupling in a finite time. The constructions we propose require little

analytical knowledge about the Markov chain.

The report is organized as follows: Section 2 describes the need for coupling con-

structions, by showing the range of different path behaviours which can arise even

when the transition probabilities are fixed. Section 3 recalls briefly the so-called

splitting method, which is widely used and recommended as a generic coupling

method for Markov chains. In Section 4, we describe how to couple paths using

one or many independent proposals at each simulation step. Unlike splitting, this

method does not require calculating minorizations explicitly before it can be used.

Both methods are applicable whenever the n-step transition probabilities Pn(x, dy)

of a Markov chain are known. Since this is extremely unlikely when n > 1, these

should essentially be thought of as one-step coupling constructions: two paths which

are already sufficiently close can be coupled in one step.

The second part of this report (Sections 5 and onwards) discusses the problem

of coupling Markov chain sample paths over many time steps. The couplings we

propose are not Markov, but preserve marginal distributions and ergodic properties.

Most importantly, they are based upon the method described in Section 4, which

allows coupling with a minimum of explicit calculations.
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2. Flows

Let a transition kernel P (x, dy) be given on a sufficiently regular state space E. It

is assumed that a Markov chain with transition probabilities P can be constructed

as a flow. This usually proceeds as follows:

X
s

F F F F F F F F F F F F
s+1 s+2 s+4 s+5 s+6 s+7 s+8 s+9 s+10 s+11 s+12

X
s+12

s+3

Figure 1. A Markov flow and a realization Xt = ϕs,t(Xs).

Let F : E → E denote a random function (or computer program) which, given

a point x ∈ E, produces a random variable F (x) satisfying

P

(
F (x) ∈ dy

)
= P (x, dy).(2)

Since the function F is random, we may define an infinite sequence of indepen-

dent, identically distributed functions F1, F2, . . . and compose them, arriving at a

(random) flow

ϕs,t(x) = Ft(Ft−1(· · ·Fs+1(x) · · · )), t ≥ s.(3)

Given any initial random variable X0 ∈ E, we can now set Xt = ϕ0,t(X0), t =

1, 2, 3, . . . and this is then a realization of a Markov chain, initially distributed as

X0, and whose evolution is governed by P . We can also get a whole collection of

Markov chains with transition probabilities P if we keep the realization of ϕ0,t fixed

and vary X0. These realizations are then clearly dependent.
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As the functions F1, F2, . . . need only satisfy (2), there is considerable freedom

in choosing them, and consequently a great deal of variety in the possible imple-

mentations of the flow ϕ0,t. Consider the following example: let E = {1, . . . , d},

d > 3, and consider the following transition kernel:

P (x, {x± 1}) = p, P (x, {x}) = 1− 2p, P (x, {y}) = 0 otherwise,(4)

with the conventions d+ 1 = 1 and 1− 1 = d (that is , addition modulo d). There

are several ways of constructing the associated Markov chain.

First way: Let W ∈ {−1, 0,+1} be a random variable satisfying P(W = ±1) =

p and P(W = 0) = 1− 2p. Then

F (x) = x+W satisfies P
(
F (x) = y

)
= P (x, {y}).

Defining ϕt as in (3), let us consider two Markov chains Xt = ϕ0,t(x) and

X ′t = ϕ0,t(x′). If x 6= x′, then we shall always have Xt 6= X ′t. Clearly, the

paths must evolve in parallel, and P(T <∞) = 0.

Second way: Let W1, . . . ,Wn be independent random variables, each with the

same distribution as W in the previous example. Clearly,

F̄ (x) = x+Wx satisfies P
(
F̄ (x) = y

)
= P (x, {y}).

Define ϕ̄s,t as in (3) with Ft replaced by F̄t. Now a moment’s thought reveals

that the chains X̄t = ϕ̄t(x) and X̄ ′t = ϕ̄t(x′) evolve independently until the

first time T̄ that X̄t = X̄ ′t holds, after which they behave identically. A

standard argument based on the Borel Cantelli lemma (Lindvall, 1992, p.??)

shows that P(T̄ <∞) = 1.

Third way: The cases P(T <∞) = 0 and P(T <∞) = 1 are not the only two

possibilities. If we allow the maps Ft to depend on each other, we can easily

construct more complicated cases. Let Z0 = 1, and Zt+1 = Zt + Wt, where

Zt are independent with the same distribution as W in the first example. We

set

¯̄F t(x) =

x+Wt if x = Zt or x = Zt ± 1,

x+Wt,x otherwise,

where Wt,x are also i.i.d. with the distribution of W , independent of every-

thing else. Again, we can check that P
( ¯̄F (x) = y

)
= P (x, {y}). We construct
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the flow

¯̄ϕs,t(x) = ¯̄F t( ¯̄F t−1(. . . ¯̄F s+1(x) . . . )),

and note that if x 6= x′, x 6= 1, x′ 6= 1, then the processes ¯̄Xt = ¯̄ϕ0,t(x) and
¯̄X ′t = ¯̄ϕ0,t(x′) can either couple or not. If x = 1, x′ 6= 1, they never couple.

We remark that in the examples above, the flows correspond to the same “Markov

chain”, i.e. the same transition probabilities, while the actual coupling behaviour

is widely different. In all cases however, that is, for each of Xt = ϕ0,t(x), X̄t =

ϕ̄0,t(x), and ¯̄Xt = ¯̄ϕ0,t(x), the law of the process at time t converges to the uniform

distribution on E = {1, . . . , d}, and this at the same rate.

Suppose now that d is sufficiently large, say d = 100. If x, x′ ∈ {1, . . . , 100} are

chosen such that |x− x′| > 1, then the measures P (x, ·) and P (x′, ·) are mutually

singular.In particular, it is impossible to ensure that F (x) = F (x′) for any choice

of random function F consistent with (2). In the worst case, we require 25 steps

minimum to couple two initial points in the flow sufficiently far apart. It seems

natural therefore to study coupling methods which operate over several time steps.

3. Coupling by Splitting

If there is to be any hope of applying coupling arguments to a chain given by a

transition kernel, it is clear that we must be able to construct suitable flows (i.e.

those such that P(T < ∞) > 0) in a systematic way. One such method, and so

far the only one to be widely successful, is the splitting technique, originally due to

Nummelin (1978).

We assume that we can exhibit a small set C ⊂ E, that is, there exist ε > 0,

n ≥ 1 and a probability measure µ on E such that

Pn(x, dy) ≥ εµ(dy), x ∈ C.(5)

Here Pn(x, dy) =
∫
P (x, dx1)

∫
P (x1, dx2) . . . P (xn−1, dy) denotes the n-step tran-

sition probability kernel. If we write, for x ∈ C,

Pn(x, dy) = εµ(dy) +
(
Pn(x, dy)− εµ(dy)

)
= εµ(dy) + (1− ε)Q(x, dy),
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we have exhibited the n-step transition probability as a mixture of a kernelQ(x, dy) =

(1− ε)−1
(
Pn(x, dy)− εµ(dy)

)
and a distribution µ independent of x ∈ C. The con-

dition (5) ensures that Q is positive.

p (x , y)

p (x’, y)

x’x

µ(y)

n

n

Figure 2. Splitting construction: with probability ε, both parti-

cles will select the same point whose law is µ. Otherwise, particle x

chooses a point with law q(x, y) =
(
pn(x, y)−µ(y)

)
/(1−ε) and par-

ticle x′ chooses a point with law q(x′, y) =
(
pn(x′, y)−µ(y)

)
/(1−ε).

Now suppose we simulate two Markov chains Xt and X ′t in any way we choose,

as long as both chains can simultaneously enter C once in a while. When this

happens at some time t0 say, we modify the simulation as follows: with probability ε,

generate Z ∼ µ and set Xt0+n = X ′t0+n = Z. With the remaining 1− ε probability,

generate Xt0+n ∼ Q(Xt0 , ·) and X ′t0+n ∼ Q(X ′t0 , ·) (see Figure 3). We do not define

the chains at the intermediate times s = t0 +1, . . . , t0 +n−1. Clearly, at least with

probability ε > 0, we shall have T = t0 + n using this method.

While theoretically convenient, this construction does not describe how to simu-

late from Q. Fortunately, the following coupling method (“flow coupler”) is easy to

implement. We set n = 1 for simplicity, and because Pn for n > 1 is rarely known

explicitly.
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Gamma Coupler: Modifies an existing flow by operating on n-step transitions.

Requires: Explicit knowledge of the minorization condition (5) (with n = 1 for

simplicity), including the Radon-Nikodym derivative

D(x, y) = µ(dy)/P (x, dy),

and any flow ϕt built from maps Ft as in (3), say.

Returns: A flow

Γ(ϕ)s,t(x) = Γ(Ft) ◦ · · · ◦ Γ(Fs+1)(x).

Method: For each t let Zt be an independent random variable with distribution

µ, and independently, let ξt be uniform on [0, 1]. We set

Γ(Ft)(x) =

Zt if x ∈ C and D
(
x, Ft(x)

)
> ε−1ξt

Ft(x) otherwise.
(6)

As output, the Gamma Coupler produces a modified flow Γ(ϕ)s,t, and conse-

quently a new family of Markov chains XΓ
t = Γ(ϕ)0,t(x). It is important to check

that these have the correct transition probabilities (i.e. P ). The proof is short and

well known, but we repeat it here for the convenience of the reader.

Lemma 1. The Gamma Coupler couples flows correctly, i.e.

P

[
Γ(Ft)(x) ∈ dy

]
= P (x, dy).

Proof. Let ϕs,t be a flow in the form (3), where each Fs(x) has the law P (x, ·). If

f is any bounded, real valued function and x ∈ C, we have

E

(
f ◦ Γ(Fs(x)

)
−
∫
f(y)P (x, dy)

= E

((
f ◦ Z − f ◦ Fs(x)

)
1 ∧ εD(x, Fs(x))

)
=
∫

(f(z)− f(y))P (x, dy) ∧ εµ(dz).

The last term is antisymmetric (equal to its negative) under the change of variables

y ↔ z, and consequently it must be zero. Thus we see that Γ(Fs)(x) has the law

P (x, ·).
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There is no guarantee in general that the chains XΓ
t = Γ(ϕ)0,t(x) and X ′

Γ
t =

Γ(ϕ)0,t(x′) will couple, unless we make further hypotheses upon the original flow

ϕs,t. We will discuss this issue in a later section.

A simple generalization of the Gamma Coupler consists in taking a finite col-

lection of small sets C1, . . . , Cr say, each of which satisfies (5) with some εi and µi

(but the same n). Then we take Zt,i ∼ µi define Di(x, y) accordingly, and replace

(6) with

Γ(Ft)(x) =

Zt,i if x ∈ Ci and Di

(
x, Ft(x)

)
> ε−1

i ξt

Ft(x) otherwise.

This version of the Gamma Coupler has been called the MultiGamma Coupler

(Green and Murdoch, 1998).

4. Coupling with proposals

In this section, we describe another method for coupling chains by modifying an

existing flow. To motivate the procedure, let us examine more closely the formula

(6) for x ∈ C. It is not difficult to see that the recipe amounts to rejection sampling:

we are attempting to simulate µ using random variables generated from P (x, ·).

This is possible since by (5), the latter distribution dominates µ.

The most important aspect of the Gamma Coupler for us is the following: given

Ft(x) ∼ P (x, ·), we either keep this random variable, or replace it with Zt according

to a decision rule which yields Γ(Ft)(x) ∼ P (x, ·), that is, preserves the distribution

P (x, ·).

From this observation, it is clear now how to construct different coupling meth-

ods; for each x, define a Markov chain whose stationary distribution is P (x, ·).

This chain should propose a common value Y say, independent of x, which ensures

coupling between any two points x and x′ which both happen to accept Y .

In the coupling method described below, we shall assume that P (x, dy) has a

density p(x, y) with respect to some σ-finite measure m on E. All other densities

mentioned will also be with respect to m.

Independence Coupler: Modifies an existing flow to induce coupling, by op-

erating on one step transitions.
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Requires: One step transition probability density p(x, y), proposal density q(y)

and any flow ϕt built from maps Ft as in (3), say.

Returns: A flow CI(ϕ)s,t = CYt,1,...,Yt,k(Ft) ◦ · · · ◦ CYs+1,1,...,Ys+1,k(Fs+1).

Parameter: k = 1, 2, 3, . . . to regulate the “coupling propensity”.

Method: Let I = (Ys,j : 0 ≤ s ≤ t, 1 ≤ j ≤ k) be a vector of independent random

variables with common density q, and let ξs,j be corresponding independent

uniforms on [0, 1]. Define

CYt,1,...,Yt,k(Ft)(x) = CYt,k(· · · CYt,1(Ft)(x) · · · ),

q(y)

p(x,y)

q(y)

p(x,y)

Figure 3. Which is more likely, the top or the bottom picture? If

two independent points F (x) and Y are given, the Independence

Coupler chooses the jointly most likely provenance of each. Then

it exchanges F (x) and Y if necessary, and calls the result Γ(F )(x).



10 L.A. BREYER AND G.O. ROBERTS

where for any map F and random variable Y ,

CY (F )(x) =

Y if p(x,Y )q(F (x))
p(x,F (x))q(Y ) > ξ

F (x) otherwise.
(7)

with the convention that x/0 = 1 and 0/0 = 0. The variables ξs,j are used in

(7) only in conjunction with Ys,j .

Figure 4 gives another interpretation of (7). To construct CY (F )(x), a choice

is made between two independent random variables, namely F (x) and Y . We

measure the likelihood p
(
x, F (x)

)
q
(
Y
)

that F (x) has distribution p(x, ·) and Y

has distribution q against the likelihood p(x, Y )q
(
F (x)

)
that Y has distribution

p(x, ·) and F (x) has distribution q. In case the latter hypothesis is accepted, we

set CY (F )(x) = Y , otherwise CY (F )(x) = F (x).

Lemma 2. The Independence Coupler couples flows correctly, i.e.

P(CY (F )(x) ∈ dy) = P (x, dy).

Proof. See the proof in Breyer and Roberts (1999).

A potential difficulty arises above when P (x, dy) does not have a density (clearly

this can only occur on an uncountable state space). A straightforward generaliza-

tion of (7) is possible, if we replace the acceptance ratio by a Radon-Nikodym

derivative. Alternatively, variations on the theme are also possible: in Breyer and

Roberts (1999), it is shown how to couple the flow of a Metropolis-Hastings chain,

whose transition probabilities are never absolutely continuous on an uncountable

state space. See also the second example below.

Example: Random Walk on the circle. Let E = {eix : x ∈ R} denote

the unit circle in the complex plane. We define a flow in the following way. Let

p : (−π, π]→ R be a probability density and suppose that Wt are i.i.d. with density

p. Then

Ft(eix) = ei(x+Wt)has t.f. given by P
(
eix, d(eiy)

)
= p̄(y − x)dy,
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where p̄ : R → R is the periodic continuation of p. To apply the random coupling

method, we take (say) a uniform proposal q : (−π, π]→ R, q(x) = (2π)−1. Then

CY (F )(eix) =

e
iY if p̄(Y−x)

p̄(W ) > ξ,

ei(x+W ) otherwise.

C   (F)F

x x

x + W

Y

x + W B

Y

Figure 4. Effect of one iteration of the Independence Coupler on

the circle map F (eix) = ei(x+W ).

The effect produced is simple to describe. A random subset

B =
{
x : p̄(Y − x) > ξp̄(W )

}
of the circle is created, and all points x within B now map to the common value

Y . The map F outside of B is unchanged (see Figure 4).

Increasing the coupling propensity k > 1, we proceed as follows: since CYt,1(Ft)(x) ∼

P (x, ·) by construction, we apply (7) to this random function, giving a new random

function CYt,1,Yt,2(Ft) ∼ P (x, ·). Since another point Yt,2 would be proposed, a

generally different section B′ of the circle would accept. Thus the random func-

tion CYt,1,Yt,2(Ft) would map a point x to either Yt,1, Yt,2 or Ft(x). Iterating this

procedure sufficiently, it is conceivable (and can be shown, see Breyer and Roberts,

1999) that eventually, CYt,1,...,Yt,k(Ft)(x) no longer depends on Ft(x), but instead

the function is built from a finite number of regions B,B′, . . . and corresponding

points Yt,1, Yt,2, . . . . From the simulation point of view, this allows a continuum of
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Markov chain paths Xt−1(x) = ϕ0,t−1(x), x ∈ E, to be replaced by a finite number

Xt(x) = CYt,1,...,Yt,k(Ft)(Xt−1(x)) in just one step!

Example: Metropolis-Hastings chains.

Let q(x, z) be a kernel density and π a probability density on E ⊂ R
d. A

Hastings-Metropolis Markov chain is usually simulated by using a flow ϕt in the

form (3), where

Ft(x) =

Zt(x) if π
(
Zt(x)

)
q
(
Zt(x), x

)
> ψtπ(x)q

(
x,Zt(x)

)
x otherwise,

(8)

where Zt(x) is a random variable with density q(x, ·), and ψt is an independent

uniform on [0, 1]. The transition kernel P for this Markov chain can be written

P (x, dz) =
1

π(x)
(
π(x)q(x, z) ∧ π(z)q(z, x)

)
dz + r(x)δx(dz),(9)

where r(x), the rejection probability, is such that P (x,E) = 1, a∧b means min(a, b)

and we are assuming π(x) > 0 for simplicity.

Clearly, this transition function does not have a density with respect to any σ-

finite reference measure, unless the state space E is countable. Nevertheless, we

can still hope to couple the chain, since P (x, dz) and P (x′, dz) are often partially

absolutely continuous. For example, if q(x, z) is continuous as a function of x, then

this will be so if x and x′ are sufficiently close.

To couple the flow ϕt constructed from the random functions Ft given in (8), we

proceed as follows: first, we couple the proposal Zt(x): since q(x, z) is a density,

this poses no problems. Let Yt,1 be an independent random variable with density

b say, and ξt,1 and independent uniform on [0, 1]. We set

CYt,1(Zt)(x) =

Yt,1 if q(x, Yt,1)b
(
Zt(x)

)
> ξt,1q

(
x,Zt(x)

)
b(Yt,1)

Zt(x) otherwise.

Note that we still have P
(
CYt,1(Zt)(x) ∈ dz

)
= q(x, z)dz, so this is a valid way of

generating a proposal for the Hastings Metropolis Markov chain. More generally,
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we have P
(
CYt,1,...,Yt,k(Zt)(x) ∈ dz

)
= q(x, z)dz for all k ≥ 1. Now we simply set

CYt(Ft)(x) =

CYt(Zt)(x) if π
(
CYt(Zt)(x)

)
q
(
CYt(Zt)(x), x

)
> ψtπ(x)q

(
x, CYt(Zt)(x)

)
x otherwise,

where Yt = (Yt,1, . . . , Yt,k) and we have P
(
F

(n0)
t (x) ∈ dz

)
= P (x, dz) as in (9).

Example: Gibbs samplers

In Rd, let π(x1, . . . , xd) denote a probability density, and consider the condition-

als

πi(xi |xj , j 6= i) = π(x1, . . . , xd)/
∫
π(x1, . . . , xd)dxi.

Associated with πi is a kernel

Pi(x, dy) = πi(yi |xj , j 6= i)dyi
⊗
j 6=i

δxj (dyj),

which corresponds to the move Fi(x1, . . . , xd) = (x1, . . . , Zi, . . . , xd) where Zi ∼

πi(· |xj , j 6= i). Gibbs sampler flows consist in the random or periodic composition

of the maps Fi where i ranges over all indices 1, . . . , d. For simplicity, we shall

consider only the case of periodic composition.

Note an important feature of Gibbsian flows: if x 6= x′ with at least two coor-

dinates different, then Pi(x, ·) and Pi(x′, ·) are always mutually singular. Conse-

quently, it is impossible to couple Gibbs sampler paths arising from x and x′ in a

single step. Nevertheless, it is possible to couple Gibbs sampler flows over several

simulation time steps, as follows:

A single complete sweep F = Fd◦· · ·◦F1 through all coordinates has a transition

density

p(x, y) =
d∏
i=1

πi(yi | y1, . . . , yi−1, xi+1, . . . , xd).

Hence if Y = (Y1, . . . , Yd) ∼ q(·) independently of F , we define CY (F ) exactly as in

(7).

5. Catalytic Couplers

The methods presented in the first half of this report are able to couple two

(or more) sample paths, by modifying the underlying flow ϕs,t in such a way that
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neighbouring paths can link up in a single simulation time step. One advantage is

that the resulting flow (either Γ(ϕ)s,t or CY (ϕ)s,t) remains Markovian. An intuitive

pitfall is that in a given simulation, it is necessary to wait until two given paths come

Ordinary particleCatalyst

Figure 5. One step flow F (x) without catalyst (top) and corre-

sponding flow CY (1),...,Y (5)(F )(x) with five catalysts. State space is

two dimensional
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close together before they have a chance of coupling. With the splitting technique,

it is not immediately clear how this problem may be addressed, however in the case

of the Independence Coupler, we can try giving the proposals Yt,1, Yt,2, . . . some

limited ‘intelligence’, thinking of them as processes in time t = 0, 1, 2, . . . . For each

j = 1, . . . , k, we will call Yt,j a catalyst, since it helps two neighbouring paths to

couple.

To emphasise the point, we shall also write Y (j)
t instead of Yt,j . Here now is a

definition:

Catalytic Coupler: Modifies an existing flow to facilitate coupling of n step

transitions. If κ(x, y) = p(x, y) below, we sometimes call this an Autocatalytic

Coupler.

Requires: One step transition probability density p(x, y), another transition den-

sity κ(x, y) that we can sample from and any flow ϕs,t built from maps Ft as

in (3) say.

Parameter: k = 1, 2, 3, . . . representing the number of catalysts.

Returns: A flow CY (1),...,Y (k)(ϕ)s,t = C
Y

(1)
t ,...,Y

(k)
t

(Ft) ◦ · · · ◦ CY (1)
s+1,...,Y

(k)
s+1

(Fs+1).

Method: Independently of the flow ϕs,t and of each other, let Y (j)
s , s = 0, 1, 2, . . .

be Markov chains with transition density κ(x, y) for j = 1, . . . , k. Let ξ(j)
s be

associated uniforms on [0, 1]. We set

C
Y

(1)
t ,...,Y

(k)
t

(Ft) = C
Y

(k)
t

(· · · C
Y

(1)
t

(Ft) · · · ),

and for any map F , j = 1, . . . , k, s = 0, 1, 2, . . .

C
Y

(j)
s

(F )(x) =


Y

(j)
s if

p(x,Y (j)
s )κ(Y

(j)
s−1,F (x))

p(x,F (x))κ(Y
(j)
s−1,Y

(j)
s )

> ξ
(j)
s

F (x) otherwise,
(10)

using the conventions x/0 = 1 and 0/0 = 0.

The Catalytic Coupler is a generalization of the Independence Coupler of Sec-

tion 4, as can be seen by taking κ(x, y) = q(y) and comparing (10) with (7).

The effect of the catalysts upon the flow is illustrated in Figure 5. At time zero,

let us distribute a collection (xi : i = 1, . . . ,m) of round particles throughout the

state space E. Over time t = 1, 2, . . . , the particles evolve as dependent Markov

chains (Xt(xi) = ϕ0,t(xi) : i = 1, . . . ,m) with transition density p(x, y), which may

or may not result in some of the particles coupling successfully. Now apply the
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Catalytic Coupler. We distribute k triangular “catalyst” particles at time zero,

and allow them to evolve independently with transition density κ(x, y) throughout

E. When a round particle finds itself close enough to some triangular particle,

it gets captured by the catalyst, and carried for a random time period, before

being freed again. If two or more round particles are close to some triangular

particle at the same time, all get captured and carried, but only one of these is

ever freed again, as the others are now coupled to it. Eventually, only one round

particle may survive. The path histories of the round particles are given by (Xt =

CY (1),...,Y (k)(ϕ)0,t(xi) : i = 1, . . . ,m, while the path histories of the catalysts is given

by (Y (j)
t : j = 1, . . . , k).

We can interpret the density κ(x, y) as labeling the “species” of catalyst that we

are using. Different species κ have different abilities to carry particles for a long

time, and also different ranges of action.

An interesting special case is when p(x, y) = κ(x, y), that is, the catalyst particles

are of the same type as the others. In this case, we will call the corresponding Flow

Coupler autocatalytic. The important particularity of this coupler is that, once a

catalyst captures a particle, it never frees it again. At best, it passes it to another

catalyst to carry. Indeed, it is easy to check from (10) that

C
Y

(j)
t

(F )(Y (j)
t−1) = Y

(j)
t ,(11)

irrespective of F . When κ(x, y) 6= p(x, y), the relation (11) no longer holds with

certainty.

6. The Autocatalytic Coupler

In this section, we briefly describe the case k = 1 of a single catalyst Yt = Y
(1)
t

with κ(x, y) = p(x, y). As stated in the previous section, this catalyst never frees

captured particles. Instead, the ordinary particles in Figure 5 are swept up over

time by the process Yt until no independent ones are left. Since Yt obeys the same

transition probabilities p(x, y), it ‘sweeps in the right places’.

Proposition 3. Let ϕs,t be a flow associated with a positive recurrent, aperiodic

transition density p(x, y), and let Yt be an independent catalyst. For any x ∈ E,

let Xt = CY (ϕ)0,t(x) and T = inf{s : Xs = Ys} be the sweep up time of particle x.

Then P(T <∞) = 1.
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Y
s

Y
s+12

Figure 6. The flow in Figure 2 modified to include a single cata-

lyst sweeping up particles.

Proof. Let C be a set such that π(C) > 0 and y 7→ infx∈C p(x, y) is not identically

zero nor infinite. We can thus find a set D with

inf
x1,y1∈C
x2,y2∈D

p(x1, y2)p(y1, x2)
p(x1, x2)p(y1, y2)

> ε say.

Suppose that P(T = ∞) > 0. By positive recurrence, aperiodicity and indepen-

dence, both Xt and Yt must enter C infinitely often on {T = ∞}. Each time

this occurs, both processes may enter D immediately afterwards with some small

probability α > 0. Unpon entering D, coupling occurs independently with proba-

bility at least ε. This contradicts the assumption T = ∞. Hence P(T < ∞) = 1

necessarily.

As a consequence of introducing the catalyst Yt into the flow, the process Xt =

CY (ϕ)0,t(x) is no longer Markov. This is however not a major issue since all as-

ymptotic ergodicity properties are preserved.

Theorem 4. Let Xt = CY (ϕ)0,t(x), where ϕs,t is defined as in (3), and CY (ϕ)s,t

is the result of (10) with a single catalyst Yt = Y
(1)
t . Then

(1) P(Xs ∈ dy) = P s(x, dy), s = 0, 1, 2, . . .
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(2) If p(x, y) is positive recurrent, with invariant distribution π, then

lim
t→∞

1
t

t∑
s=1

f(Xs) =
∫
fdπ P− a.s.

for all integrable functions f .

(3) If p(x, y) admits a Central Limit Theorem, then so does the realization Xt.

Proof. (1) We have, taking q(y) = p(z, y) in Lemma 2, that

P(X1 ∈ dy) =
∫
P(X1 ∈ dy |Y0 = z)P(Y0 ∈ dz)

=
∫
P (x, dy)P(Y0 ∈ dz) = P (x, dy).

Hence by induction,

P(Xs+1 ∈ dy) =
∫
P(Xs+1 ∈ dy |Xs = z1, Ys−1 = z2)P(Xs ∈ dz1 |Ys−1 ∈ z2)P(Ys−1 ∈ dz2)

=
∫
P (z1, dy)P s(x, dz1)P(Ys−1 ∈ dz2)

= P s+1(x, dy).

(2,3) Write

t∑
s=1

f(Xs) =
T∑
s=1

f(Xs) +
t∑

s=T+1

f(Xs)

=
T∑
s=1

[
f ◦ ϕ0,s(x)− f(Ys)

]
+

t∑
s=1

f(Ys).

Since P(T < infty) = 1, the first term on the right is a finite sum. We deduce

immediately that

lim
t→∞

1
t

t∑
s=1

f(Xs) = lim
t→∞

1
t

t∑
s=1

f(Ys) =
∫
fdπ,

and similarly

lim
1√
t

t∑
s=1

[
f(Xs)−

∫
fdπ

]
= lim

1√
t

t∑
s=1

[
f(Ys)−

∫
fdπ

]
= N (0, σ2),

where σ2 is the asymptotic variance.

These results generalize immediately by induction to the case of k independent

catalysts, since CY (1),...,Y (k)(ϕ)s,t = CY (k)(· · · CY (1)(ϕ) · · · )s,t.

To end this section, we give an elementary proof of ergodicity for positive recur-

rent aperiodic Markov chains with a density.
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Theorem 5. Let Xt and Yt be two independent Markov chains with positive re-

current, aperiodic transition density p(x, y) and stationary distribution π. Assume

that Y0 ∼ π, then

‖P(Xt ∈ ·)− π‖TV ≤ E
t∏

s=0

(
1− p(Xs, Ys+1)p(Ys, Xs+1)

p(Xs, Xs+1)p(Ys, Ys+1)

)
+

,(12)

and the right hand side tends to zero as t tends to infinity.

Proof. Without loss of generality, suppose that Xt = ϕ0,t(X0) where the flow ϕs,t

is independent of Y . Both processes exist as part of the same flow CY (ϕ)s,t, since

Yt = CY (ϕ)0,t(Y0) and Xt = CY (ϕ)0,t(X0) on {T > t}, where T = inf{s : Xs = Ys}.

Now obviously

P(T > t) = P(Xs 6= Ys for all s ≤ t),

from which we deduce that

P(T > t) = P

(
p(Xs, Ys+1)p(Ys, Xs+1)
p(Xs, Xs+1)p(Ys, Ys+1)

≤ ξs for all s ≤ t

)

= E

t∏
s=0

(
1− p(Xs, Ys+1)p(Ys, Xs+1)

p(Xs, Xs+1)p(Ys, Ys+1)

)
+

,

and the coupling inequality (1) gives (12).

7. Funnelweb Couplers

Recall that one motivation for introducing the autocatalytic coupler is to help the

catalysts to ‘find where to go’. Since the catalysts are independent, no concerted

effort to bring particles together is therefore achieved. The idea of introducing

independent catalysts into the flow can be taken a step further. Separate paths

can be constructed in such a way that coalescence is achieved with certainty in a

set number of simulation steps. To make this work, we build them from the other

end: one final state is reached by several previous states, each in turn arrived at

from several other states, etc. This naturally introduces a branching process. If we

are not concerned about ensuring the coalescence of two specific initial states over

time, we can build such a branching process in a straightforward manner.

Suppose that p(x, y) has a stationary distribution density π(x). The reverse

density p̃(x, y) = p(y, x)π(y)/π(x) defines a Markov chain which, in equilibrium,

can be interpreted using Bayes’ theorem as the time reverse of a stationary chain
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whose transitions are governed by p(x, y). We may therefore construct plausible

p(x, y)-paths of any length by generating p̃(x, y)-paths backwards in time.

Fix a number n of simulation steps, and generate a single random variable Yn,1.

Let k be a desired number of offspring, and define random variables Yn−1,1, . . . , Yn−1,k

independently by Yn−1,j ∼ p̃(Yn,1, ·). Each of these variables in turn produces k

offspring in the same manner, arriving at a grand total of k2 offspring. We list this

generation simply as Yn−2,1, . . . .Yn−2,k2 . Repeating the construction recursively, we

Figure 7. A Funnelweb Coupler with k = 2 and n = 5.
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arrive eventually at the (n− 1)th generation, consisting of kn−1 offspring denoted

Y1,1, . . . , Y1,kn−1 .

Funnelweb Coupler: Modifies a section of flow ϕs,s+n to induce coupling of

exponentially many paths.

Requires: A section of a flow ϕs,s+n built from maps Fs+1, . . . , Fs+n as in (3). A

‘forward’ transition density p(x, y) and a ‘reverse’ transition density p̃(x, y).

Parameter: k = 2, 3, . . . representing the number of offspring per generation.

Returns: A flow CG(ϕ)s,s+n = CG0(Fs+n) ◦ · · · ◦ CGn−1(Fs+1).

Method: Let G0 = {Yn,1}, G1 = {Yn−1,1, . . . , Yn−1,k}, . . . , Gn−1 = {Y1,1, . . . , Y1,kn−1}

represent the successive generations in a branching process with k offspring

per generation such that, for any generation j = 1, . . . , n−1, each Y ∈ Gj has

exactly one ancestor Y ∗ ∈ Gj−1 such that Y ∼ p̃(Y ∗, ·) and given the previous

generation, all offspring are independent. For Y ∈ Gj and F any map, we set

CY (F )(x) =

Y if p(x,Y )p̃(Y ∗,F (x))
p(x,F (x))p̃(Y ∗,Y ) > ξ

F (x) otherwise,
(13)

and CGj (F ) = CYj,1,...,Yj,kj (F ) = CYj,kj (· · · CYj,1(F ) · · · ).

An illustration of the effect of the Funnelweb Coupler can be seen in Figure 7. It

is clear that the processes Xt = CG(ϕ)0,t(x) are not Markov chains at all. However,

the marginal probabilities are still preserved, since each original map Ft from the

original flow is modified by proposals independent of it (and of each other, given

the previous generation). We prove this below.

Lemma 6. Applying the Funnelweb Coupler to a section of flow ϕs,s+n preserves

the marginal distribution over n steps, i.e.

P

(
CG(ϕ)s,s+n(x) ∈ dy

)
= Pn(x, dy).

Proof. Clearly P
(
CG(Fs+n)(x) ∈ dy | G0

)
= P (x, dy) by Lemma 2 applied k times.

We shall use induction with

P(CG(ϕ)s+n−k,s+n(x) | Gk, . . . ,G0) = P k(x, dy).
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By hypothesis, given the generations Gk, . . . ,G0, the variables Yk+1,j are indepen-

dent of each other and of Fs+n−k−1. Hence Lemma 2 applied repeatedly gives

P

(
CGk+1(Fs+n−k−1)(x) ∈ dy | Gk, . . . ,G0

)
= P (x, dy).

Moreover, given Gk, . . . ,G0, the maps CGk+1(Fs+n−k−1) and CG(ϕ)s+n−k,s+n are

clearly independent, which gives

P(CG(ϕ)s+n−k−1,s+n(x) ∈ dy) =
∫
P(CG(ϕ)s+n−k,s+n(z) | Gk, . . . ,G0)P (x, dz)

=
∫
P k(z, dy)P (x, dz) = P k+1(x, dy).

This completes the induction and the proof.

The Funnelweb Coupler allows the construction of compicated n-step flows whose

transitions are governed by the n-step kernel Pn(x, dy). Consequently, all asymp-

totic results (Laws of Large Numbers and Central LImit Theorems) apply to the

Markov chains Xnt(x) = CG(t)(ϕ)n(t−1),nt ◦ · · · ◦ CG(1)(ϕ)0,t(x) where x ∈ E and

G(1), . . . ,G(t) are independent n-generation branching processes.

Note also that we cannot make the web ‘100% sticky’: particles which have

been captured by one generation may well be freed at the next simulation step.

Intuitively, our choice p̃(x, y) = p(y, x)π(y)/π(x) ought to maximize the stickiness,

because the paths proposed are typical (see Figure 7).
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