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Abstract. Let X be the minimal diffusion associated with a uniformly elliptic
differential operator L on a bounded subdomain of Rd, with C2 boundary.

Under the only assumption that the coefficients of L be Hölder continuous,
we prove all the standard quasistationary limit theorems (cf. Markov chain

theory). Moreover, we show that the laws of X, conditioned on explosion

occuring after time s, converge in total variation, as s tends to infinity, to the
law of a positive recurrent diffusion X∞, which is related to X by the addition
of the drift a∇ logϕ, where ϕ is the ground state of L. Previously, such results
were shown only for symmetrically reversible diffusions.

1. Introduction

Let E be a bounded subdomain of Rd, with C2 boundary, and consider a second
order elliptic differential operator L on E, having Hölder continuous coefficients.
The existence of a ‘minimal’ diffusion process X associated with L on E is well
known, and we denote its lifetime by ζ = inf{t > 0 : Xt /∈ E}.

The present paper is concerned with the behaviour of X, when the death time
is far into the future. Under this assumption, which is made precise below, it is
shown that the process appears positive recurrent to the observer.

An intuitive explanation for this phenomenon can be given as follows: if the
process is not allowed to leave the bounded region E, it is condemned to revisit
subsets of E endlessly, thus looking like a positive recurrent process.

Consider now the general problem of conditioning X to have an infinite lifetime.
This is trivial when Px(ζ = ∞) > 0. But already if X is a Brownian motion and
ζ = inf{t > 0 : ‖Xt‖ > 1}, we have Px(ζ =∞) = 0. One hopes to get around this
problem by conditioning on the event {ζ > s} for larger and larger values of s. The
question then is whether the law of the process, conditioned on these approximating
events, converges to the law of some well defined process, as s→∞. This is indeed
the case (corollary 7), as we show here.

The statements above naturally lead to an asymptotic analysis of the distribu-
tion functions t 7→ Px(ζ > t). This task is much simplified when the diffusion is
symmetrically reversible (with respect to some finite measure m on E), since the
transition function of X then typically has an expansion

Ex(f(Xt), ζ > t) =
∞∑
i=0

e−λitϕi(x)
∫
E

f(y)ϕi(y)m(dy), f ∈ L2(dm),(1)
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where the set (ϕi) forms an orthonormal system of eigenfunctions in L2(dm). Tak-
ing f = 1, it is then seen that

Px(ζ > t) ∼ e−λ0tϕ0(x), x ∈ E, t→∞,(2)

on account of the inequalities 0 ≤ λ0 < λ1 ≤ λ2 ≤ · · · . If X is not symmetrically
reversible, an expansion such as (1) need not exist. Nevertheless, we prove here
that (2) still holds (see theorem 4) under no further assumptions on L.

Problems of this type are well known in the Markov chain literature, and are
usually studied in the framework of quasistationary distributions. The simplest,
and best known case in continuous time is that of a Markov chain on a finite state
space (Darroch and Seneta (1967)). One then has a large number of quasistation-
ary limit theorems, all of which we can duplicate in the diffusion case (corollary 5,
theorem 4). These results also provide a probabilistic interpretation of the princi-
pal eigenvalue and associated left and right eigenfunctions of the operator L, with
Dirichlet boundary conditions. The most general result (and perhaps most reveal-
ing) is theorem 6, which describes the mixing of the path probabilities as t tends
to infinity.

Questions related to the quasistationary behaviour of diffusions have been con-
sidered previously by various authors. Pinsky (1985) showed the weak convergence
of diffusions in a bounded set, conditioned to have infinite lifetime. Our results
differ from his in that we specifically do not require the transition function of the
process to have an L2 convergent eigenfunction expansion such as (1). Moreover,
we prove convergence in total variation.

In one dimension, diffusions conditioned not to exit an infinite interval were
considered recently by Collet et al. (1995) and under less restrictive conditions by
Jacka and Roberts (1996). In these circumstances, the limiting process (which is
shown to exist) is not recurrent, but ‘runs off to infinity’. It is to be noted however,
that every one dimensional diffusion is symmetrically reversible.

Other results in countable state space have been obtained by various authors. See
the papers by Jacka and Roberts (1995a, 1995b), Jacka et al. (1996) for continuous
time, Schrijner and van Doorn (1996) in discrete time, and Tweedie (1974) in
discrete time with continuous state space.

2. Assumptions; Analytical preliminaries

Let E be a bounded subdomain of Rd with C2 boundary. We consider on E the
second order differential operator L defined by

Lf(x) =
1
2

d∑
i,j=1

aij(x)
∂2

∂xixj
f(x) +

d∑
i=1

bi(x)
∂

∂xi
f(x), f ∈ C2(E),(3)

where C2(E) denotes the space of twice continuously differentiable real functions
on E. The matrix aij(x) is uniformly positive definite, that is

d∑
i,j=0

aij(x)hihj ≥ γ ‖h‖2 , h ∈ Rd,

and the functions x 7→ aij(x), x 7→ bi(x) are assumed locally Hölder continuous for
all i, j ≤ d.

It is known (Azencott (1974)) that there exists a unique minimal diffusion pro-
cess X = (Ω,Ft, Xt, ζ,Px : x ∈ E), whose generator extends L on C2

K(E), the
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space of compactly supported functions in C2(E). This process has the strong
Feller property: for every bounded Borel function f , the function x 7→ Exf(Xt) is
continuous.

Let E∆ = E ∪ {∆} be the one point compactification of E. It is well known
that X can be realized canonically on the space Ω = C([0,∞), E∆) of continuous
trajectories in E∆, as the coordinate process Xt(ω) = ω(t), ω ∈ Ω. The filtration
is then Ft = σ(Xs : 0 ≤ s ≤ t), the lifetime is ζ = inf{t > 0 : Xt = ∆}, and the law
Px, x ∈ E is uniquely determined by the requirements

Ex(f(Xt) | Fs) = EXsf(Xt−s) a.s. on {s < ζ},

with f a bounded Borel function, and

Px(X0 = x,Xζ+t = ∆, t ≥ 0) = 1.

We will also require the shift operators on Ω, (θtω)(s) = ω(s+ t).
Suppose that f is a bounded Borel function on E. It is shown in Azencott (1974)

that the function u(t, x) = Ex(f(Xt), ζ > t) satisfies the Kolmogorov Backward
equation

∂

∂t
u(t, x) = Lu(t, x), t > 0, x ∈ E.(4)

The proofs in the next section make crucial use of the parabolic Harnack inequal-
ity, which holds for positive solutions of (4) (Friedman (1964)). We state this result
in probabilistic form below (proposition 1), but first, it may be useful to describe
an analogous inequality for Markov chains.

Suppose that Yt is a Markov chain in continuous time with lifetime σ, evolving
in a discrete state space S. The natural filtration is denoted (Gt), and we put
pij(t) = Pi(Yt = j). We shall denote by Gσ the σ-algebra generated by random
variables of the form Ht1(σ>t) where Ht ∈ Gt. The Markov chain version of the
parabolic Harnack inequality states that, for every finite set K ⊆ S and constant
s > 0, there exists a constant MK such that

Ei[H] ≤MK · Ej [H ◦ θs], i, j ∈ K, H ∈ Gσ+.(5)

The proof of (5) is straightforward from the inequality

Ei[H ◦ θs] =
∑
j∈S

pij(s)Ej [H] ≥ pik(s)Ek[H], i, k ∈ S.

The analogue of (5) for the diffusion X is given below. The σ-algebra Fζ is
generated by random variables Ht1(ζ>t) where Ht ∈ Ft.

Proposition 1. Fix D ⊂⊂ E, a bounded subdomain of the state space. There
exists a constant MD such that, for all positive Fζ measurable random variables H,
and η > 0 sufficiently close to zero, the following inequality holds

Ex(H ◦ θη) ≤ expMD

(
|x− y|2

s
+
s

η
+ 1

)
· Ey(H ◦ θη+s), x, y ∈ D, s ≥ 0.

(6)

Note the appearance of an additional shift θη, absent in (5). This may be
explained as follows. Take H = f(Xt)1(ζ>t) for some Borel function f . This
function need not be locally bounded; thus, if we wish to bound it by its expectation,
we must first ‘smooth’ it out by shifting it by η time units along the sample path. In
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the discrete space S however, such a procedure is not necessary, since all measurable
functions are locally bounded (in the discrete topology).

The number η can be chosen arbitrarily small, but not arbitrarily large. See
Friedman (1964), p.330, theorem 5’.

Proof. Suppose first that H = f0(X0)f1(Xt1) · · · fn(Xtn)1(ζ>tn) for some 0 < t1 <
t2 < · · · < tn, and bounded positive Borel functions f0, . . . , fn. The function
u(t, x) = Ex(H ◦ θt+η), with η sufficiently small can be written

u(t, x) = Ex(f0(Xt+η)EXt+η (f1(Xt1)f2(Xt2) · · · fn(Xtn), ζ > tn), ζ > t+ η),

and hence satisfies (4) in E. By the parabolic Harnack inequality (Friedman (1964),
p.330, theorem 5’), if D is a small ball (with closure strictly contained) in E, there
exists a constant MD for which

log
u(t, x)

u(t+ s, y)
≤MD

(
|x− y|2

s
+
s

η
+ 1

)
holds with s > 0, and x, y ∈ D. Clearly, the same inequality holds (with different
constants) if D is merely bounded with closure strictly contained in E, since one
may cover D by a finite number of open balls (the number η may have to shrink
a finite number of times). We have therefore shown that (6) holds for H of the
specified product form. To prove the result for arbitrary positive Fζ measurable
H, we simply apply the monotone class theorem, since both sides of (6) are stable
under monotone limits.

Before we end this section, we must introduce one more analytical result. It
is known (Pinsky (1995)) that under the assumptions on L and E, there exists a
constant λ ≥ 0 and a pair of strictly positive bounded C2(E) functions ϕ, ϕ∗ with
the following properties:

Lϕ(x) = −λϕ(x), L∗ϕ∗(x) = −λϕ∗(x) x ∈ E

where L∗ is the formal adjoint of L, and ϕ(x), ϕ∗(x) both tend to zero as x→ ∂E.
The number λ is known as the principal eigenvalue of L, and ϕ (resp. ϕ∗) is called
the ground state of L (resp. L∗).

Standard arguments (see Breyer and Roberts (1996)) can be used to show that,
actually,

Exϕ(Xt) = e−λtϕ(x),
∫
ϕ∗(y)Eyh(Xt)dy = e−λt

∫
h(y)ϕ∗(y)dy(7)

for all x ∈ E, and h such that
∫
|h(y)|ϕ∗(y)dy <∞. Indeed, the diffusion X, while

transient, is λ-positive recurrent in a way entirely analogous to the case of Markov
chains (see Anderson(1991) for the corresponding theory).

3. Limit theorems

We will need to control the size of various expectations of the diffusion, uniformly
in the time variable. This is the purpose of the following lemma.

Lemma 2. let ν be any nonzero excessive measure (νPt ≤ ν) for the diffusion
process Xt. If f ∈ L1(dν), then for every subdomain D ⊂⊂ E with ν(D) > 0,

sup
x∈D

Ex(|f(Xt + η)| , ζ > t+ η) ≤MD

∫
|f | dν, t ≥ 0
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for η > 0 arbitrarily small and some constant MD = MD(η) independent of f or ν.

Note that excessive measures always exist. In particular, the measure ϕ∗(y)dy
is one such, by (7). But lemma 2 also applies to any recurrent diffusion.

Proof. Suppose first that f is a positive Borel function. By proposition 1, we have

Ex(f(Xt+η), ζ > t+ η) ≤ CDEy(f(Xt+η+s), ζ > t+ η + s), x, y ∈ D

where s > 0 is fixed and CD is some constant independent of t. Integrating both
sides with respect to ν(dy) on D, we have

ν(D)Ex(f(Xt+η), ζ > t+ η) ≤ CD
∫
D

ν(dy)Ey(f(Xt+η+s), ζ > t+ η + s)

≤ CDEν(f(Xt+η+s), ζ > t+ η + s)

≤ CD
∫
fdν.

Then the conclusion holds with MD = CD/ν(D) when f is positive, and hence in
general.

Thus we see that, even when f is unbounded (but ν-integrable), the expectations
Exf(Xt+η) are uniformly bounded in t: at any one fixed time, it is very difficult to
‘catch’ the process visiting regions with very large f -values. Note that the lemma
is false if η = 0, since it would imply that an arbitrary integrable Borel function f
is locally bounded.

As an illustration of the usefulness of lemma 2, we give a simple proof of the
following extension to the standard limit theorem in (Pinsky (1995), theorem
4.9.9): note that this is known, and can be derived directly using, for example,
the corresponding results in Meyn and Tweedie (1993), by using the skeleton chain
Zn = Xεn. We shall use proposition 3 in the proof of theorem 4 below.

Proposition 3. Suppose that X is positive recurrent on E, with invariant measure
ν. Then, for all f ∈ L1(dν),

lim
t→∞

Exf(Xt) =
∫
fdν, x ∈ E(8)

Proof. Theorem 4.9.9 in Pinsky(1995) states that (8) holds for all bounded Borel
functions f . If f ∈ L1(dν) is arbitrary but positive, take a sequence of bounded
Borel functions fn increasing pointwise to f . We can write, by lemma 2,

Exfn(Xt) ≤ Exf(Xt) ≤ Exfn(Xt) +M

∫
(f − fn)dν,

for some constant M . Taking limits as t→∞ on all sides, we get∫
fndν ≤ lim

t→∞
Exf(Xt) ≤

∫
fndν +M

∫
(f − fn)dν.

It remains only to apply the monotone convergence theorem.
When f is not necessarily positive, we write f = f+ − f− in the usual manner,

and apply the previous paragraph.

Suppose now that Px(ζ =∞) < 1 for all x ∈ E. Due to the connectedness of E,
the diffusion is irreducible, and the lifetime is either infinite, or finite, simultaneously
for all x ∈ E. Thus we have Px(ζ = ∞) = 0 for all x ∈ E. It follows easily that
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Ex(f(Xt), ζ > t) converges to zero as t tends to infinity. The next result describes
the precise manner in which the convergence occurs.

Theorem 4. Suppose that Px(ζ = ∞) < 1 for all x ∈ E. Let λ, ϕ and ϕ∗ be the
principal eigenvalue, ground state for L and ground state for L∗ respectively. Then

lim
t→∞

eλtEx[f(Xt), ζ > t] = ϕ(x)
∫
f(y)ϕ∗(y)dy, x ∈ E,(9)

for all Borel functions f such that
∫
f(y)ϕ∗(y)dy <∞.

Proof. Consider the transition function defined by

Qtf(x) = ϕ−1(x)eλtEx(f(Xt)ϕ(Xt), ζ > t).(10)

Let Qx be the laws of the associated Markov process. By Girsanov’s theorem, the
coordinate process Xt is, under Qx, a diffusion with generator

Af(x) = Lf(x) +
d∑

i,j=1

aij(x)
∂

∂xi
logϕ(x)

∂

∂xj
f(x), f ∈ C2

K(E).(11)

Moreover, as remarked in the previous section, we know that Exϕ(Xt, ζ > t) =
e−λtϕ(x), from which we deduce that Qt1 = 1, and hence X is recurrent under
Qx. Also, the measure ν(dy) = ϕ(y)ϕ∗(y)dy is a finite invariant measure under Qx,
hence X is positive recurrent. We normalize ϕ∗ so that this becomes a probability
measure. By proposition 3, for any Borel function f such that

∫
|f |ϕ−1dν < ∞,

we have

lim
t→∞

eλtEx(f(Xt), ζ > t) = lim
t→∞

ϕ(x)Qx(f(Xt)ϕ−1(Xt))

= ϕ(x)
∫
f(y)ϕ−1(y)ν(dy)

= ϕ(x)
∫
f(y)ϕ∗(y)dy.

Note that the function fϕ−1 is in general unbounded, which explains the need for
proposition 3.

As a consequence, we get the usual (compare with Darroch and Seneta(1967))
quasistationary limit theorems, whose proofs are left to the reader.

Corollary 5. With notation as in theorem 4,
1. For all x ∈ E,

lim
t→∞

1
t

logPx(ζ > t) = −λ;

2. For all x, y ∈ E,

lim
t→∞

Px(ζ > t)
Py(ζ > t)

=
ϕ(x)
ϕ(y)

;

3. For all x ∈ E and Borel functions f such that
∫
f(y)ϕ∗(y)dy <∞,

lim
t→∞

Ex(f(Xt) | ζ > t) = ϕ(x)
∫
f(y)ϕ∗(y)dy.

The following result, whose proof is only a slight extension of that of theorem 4,
gives arguably an even clearer picture of the phenomenon.



QUASISTATIONARY THEOREMS FOR DIFFUSIONS IN A BOUNDED OPEN SET 7

Theorem 6. Under the assumptions of theorem 4, let H ∈ Fζ and Ks ∈ Fs be
bounded, and write µ(dx) = ϕ∗(x)dx. Then, denoting by Qx the laws of the positive
recurrent process with semigroup (10) and generator (11),

lim
t→∞

eλtEx[Ks ·H ◦ θt] = ϕ(x)Qx[Ks] · Eµ[H], x ∈ E(12)

boundedly in compact subsets of E.

Proof. We suppose without loss of generality that Ks and H are positive random
variables. Let ξ(dy) = Ex(Ks, Xs ∈ dy, ζ > t), and note that, by applying lemma
2 with the excessive measure µ,

ξ(g) = Ex(Ks · g(Xt), ζ > t) ≤M · ‖Ks‖µ(g)

for every positive Borel function g. Thus the measure ξ is dominated by a constant
multiple C = M · ‖Ks‖ of µ. We aim to show

lim
t→∞

eλtEξ[H ◦ θt] = ξ(ϕ) · Eµ[H],(13)

which is a restatement of (12). Take a sequence (En) of compact subsets such that
En ↑ E, and write

eλtEξ[H ◦ θt] = eλtEξ[Xt ∈ En,H ◦ θt] + eλtEξ[Xt /∈ En,H ◦ θt].(14)

Since

eλtEx(Xt ∈ En,H ◦ θt) = ϕ(x)Qx[ϕ−1(Xt)EXt [H], Xt ∈ En],

which is a quantity bounded over all of E, the bounded convergence theorem to-
gether with (9) in which f(x) = 1En(x)Ex[H] gives

lim
t→∞

eλtEξ[Xt ∈ En,H ◦ θt] = ξ(ϕ)Eµ[X0 ∈ En,H].(15)

The second term in (14) is bounded, uniformly in t, by

CeλtEµ(Xt /∈ En,EXt [H]) ≤ C ‖H‖µ(E\En);(16)

Combining (15) and (16) together with the monotone convergence theorem as n→
∞ gives (13).

We have stated (12) for an initial distribution concentrated at x, but the same
result also holds for arbitrary compactly supported initial distributions, or more
generally, distributions which are bounded by multiples of µ. It suffices to choose
ξ in (13) accordingly.

The assertion (12) can be thought of as a generalization of the mixing property
enjoyed by positive recurrent diffusions. Indeed, for any such diffusion, the principal
eigenvalue (resp. ground state) of the generator L (there are no Dirichlet boundary
conditions) is zero (resp. the function ϕ(x) = 1). The ground state of the adjoint
of L is just the density of the invariant probability. Using these quantities in (12)
gives the mixing equation.

As an immediate corollary of theorem 6, we can give the probabilistic interpre-
tation of the process with law Q.

Corollary 7. Suppose that Px(ζ < ∞) > 0 for all x ∈ E. For every bounded,
Fs-measurable random variable Ks,

lim
t→∞

Ex(Ks | ζ > t) = Qx(Ks), x ∈ E(17)
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where (Qx : x ∈ E) are the laws of a positive recurrent diffusion X∞ with semigroup
and generator given by (10), (11) respectively. The invariant measure of X∞ is
ν(dy) = ϕ(y)ϕ∗(y)dy, and the convergence in (17) occurs boundedly on compact
subsets of E.

Proof. Apply theorem 6 with H = 1(ζ>0).

Note that, to get the above result from theorem 4, we cannot apply Pinsky’s
theorem (Pinsky (1985)) directly, as we do not know a priori wether the limit (9)
occurs uniformly on compact subsets D ⊂⊂ E.
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