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Abstract. In this paper we describe a framework for the comparison of a

finite set of points with a probability measure if the latter belongs to a sim-

ple class. The measure of closeness chosen quantifies the degree of agreement

obtained when a prescribed collection of test functions is simultaneously inte-

grated with the respect to the given probability measure, and the set of points

(identified with a set of point masses). No specific assumptions are made about

the provenance of the point set, although our results have a clear application

to certain Markov chain Monte Carlo integration problems.

1. Introduction

Numerical integration problems often require the sampling of some function at

a selected set of point locations in space. In simple problems, the points are chosen

along a regular grid, as with the technique of Riemann integration. More sophis-

ticated methods are often needed in more complicated problems, which are often

high dimensional. At this point Monte Carlo techniques are commonly applied,

which requires the generation of a set of points as a stationary random sequence,

often representing the path traveled by a specially designed Markov chain. The

dependence between the successive points is often hard to assess, although conver-

gence theorems guarantee that integration is successful when the set of points is

sufficiently large.

In this note, we shall describe certain properties shared by all sets of points,

regardless of the way they were generated. Our focus will be on comparing an arbi-

trary set of points with an arbitrary probability measure in terms of the agreement

obtained when integrating a given collection of test functions. When applied to
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certain types of integration problems with a hierarchical structure (see the example

in Section 4), this allows the analysis of integration algorithms which are far more

complicated than those which afford a probabilistic study.

Briefly, suppose we are given a probability density on a high dimensional space.

The normalizing constant may not be known, but it is often the object of at least

part of the study. Assume a satisfactory approximation to the normalizing constant

is available. This computation often requires a specialized method. We shall show

in Theorem 3 how to utilize this constant to compare an arbitrary point set, rep-

resented by a suitably close probability density, with the target density of interest.

Since the point set above is arbitrary, it might represent the output of a possibly

very sophisticated algorithm. Moreover, an important benefit arising from the abil-

ity to assess the closeness to target of our point set is the ability to gauge the impact

of removing an arbitrary collection of points from the set. This allows the design

of point sets of minimal size, which is crucial if those points are to approximate the

target economically.

The structure of this document is as follows: First, we discuss point sets as a

way of approximating probability measures in a formal framework. Next, in Section

3 we define a limited class of tractable probability densities on Rd and show how

the required properties can be used to gauge the distance to an arbitrary point

set (represented by a collection of point masses). Section 4 illustrates these results

with an example, where the target distribution is of an hierarchical type. The

final section offers possible simple extensions to more general situations where the

normalizing constant is not strictly required.

2. Approximating probability measures by point sets

Consider a probability measure π(dx) on some measurable space E. Modern

integration methods are often based upon some generalization of the classical Law

of Large Numbers, which gave us Monte Carlo integration: Given a collection X =

{x1, . . . , xt} of points in E, where each point can be interpreted independently as the

realized value of some random variable with distribution π, we can approximately

integrate any function f : E → R such that
∫
|f | dπ <∞, as

1
t

t∑
s=1

f(xs) =
∫
fdπ + error.
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The error vanishes in the limit as t tends to infinity. Moreover, when
∫
|f |2 dπ <∞,

the error isO(t−1/2), with a constant which is usually estimated through the Central

Limit Theorem.

In the advanced literature, the point set X can be generated from a Markov

chain, a semi Markov process, etc. Once a sufficient number of points is generated,

the set X is used for all subsequent integration requirements as a replacement for

µ. The number of points constituting X is chosen to satisfy several constraints,

including storage limitations (generating a completely new set X for each required

integral may be expensive, so X is usually saved) and convergence requirements

(all functions of interest should integrate to within a small percentage error). The

latter constraint is the hardest, since convergence analyses often require deep un-

derstanding of the generation method and sophisticated mathematical analyses. It

is noteworthy that such analyses often ignore any features, such as smoothness or

symmetry, exhibited by the integrands.

In contrast, below we shall ignore completely the provenance of a given set X,

but use properties of the integrand instead. Probabilistic techniques only enter in

the next section. The following familiar example encapsulates all that we shall say

in the rest of this section.

Example 1: Riemann Integration. Let E = [0, 1] and consider the point

set X = {1/t, 2/t, . . . , (t − 1)/t, 1}. Thus the typical point is xs = s/t. If f is a

differentiable function, we can write∫ 1

0

f(x)dx =
1
t

t∑
s=1

f(xs) + error, |error| ≤ sup
0≤y≤1

|f ′(y)| sup
1≤s≤t

∣∣xs − xs−1

∣∣ .
Ordinarily, we choose t (hence X) large enough to ensure a small error for a given

function f .

Suppose now that X (hence t) is fixed. For any given choice of t, there will

always exist differentiable functions which give an arbitrarily large error. We ask

which functions f can be integrated to within a specified accuracy. Write ‖f‖ =

sup0≤y≤1 |f(y)|, and set

F = {f : sup
0≤y≤1

|f ′(y)| ≤ ‖f‖}.

For f ∈ F , we have |error| ≤ ε ‖f‖ where ε = 1/t, thus any function in F is

integrated by X to within an error that is a percentage of its size.
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In the example above, it is easier to integrate a function if it varies little in

between the points xs ∈ X. The set F is designed to encode such an assumption.

We give now some simple definitions which will be used througout the paper.

Definition 1.

• Let X = {x1, . . . , xt} be a collection of points in E. The empirical distribution

associated with X is the measure

LX(dy) =
1
t

t∑
s=1

δxs(dy).

• Let F be a collection of normed functions f on E, with norm ‖·‖. Two

measures µ and ν are called substitutable (for integration on F to within

accuracy ε > 0) if∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ < ε ‖f‖ for all f ∈ F .

• Given a point set X = {x1, . . . , xt} and a probability density function π̇(x) on

E = R
n, the Approximate Integration Problem consists in deciding if∣∣∣∣∫ fdLX −

∫
f(x)π̇(x)dx

∣∣∣∣ < ε ‖f‖ ∀f ∈ F ,(1)

or in words: can LX be substituted for π̇(x)dx?

The first definition above simply establishes a correspondence between point sets

and measures. The empirical distribution is easy to deal with computationally, but

hard to manipulate analytically. In the second definition, if we take µ = LX , we

seek another distribution ν which can be substituted for LX and is more tractable.

Having made the substitution, we can then ask how close ν is to some specified

target π̇(x)dx, and attempt to answer the Approximate Integration Problem. A

formal definition of tractability shall be given in the next section. Here we note

simply that substitution of probability measures can potentially simplify the task

when combined with the triangle inequality. More precisely, if ν is substitutable

for LX , then we have∣∣∣∣∫ fdLX −
∫
fdπ

∣∣∣∣ ≤ ε ‖f‖+
∣∣∣∣∫ fdν −

∫
fdπ

∣∣∣∣ ,
and only the second term on the right need be estimated. This strategy is used

in the next section. We end this section with several examples, none of which are

crucial for the sequel.
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Example 2: F too big. Let E = R and take F as the set of all bounded

measurable functions, with norm ‖f‖ = supx∈E |f(x)|. There exist no absolutely

continuous probability measures ν on E which are substitutable for LX , for any

ε < 1. To see this by a contradiction, suppose such a measure existed, with ν(dx) =

π(x)dx say. Then if we take f(xs) = 0 for all xs ∈ X, and f(x) = 1 otherwise, we

see that ∣∣∣∣∫ fdLX −
∫
fdν

∣∣∣∣ =

∣∣∣∣∣1t
t∑

s=1

f(xs)−
∫
f(y)π(y)dy

∣∣∣∣∣
= 1 = ‖f‖ > ε ‖f‖ .

This simple example shows that if the set F is too large, many interesting measures

may not be substitutable for LX under our definition.

Example 3: F too small. Let F be the set of constant functions on E, with

norm ‖f‖ = supx∈E |f(x)| as before. Clearly, all probability measures ν give∣∣∣∣∫ fdLX −
∫
fdν

∣∣∣∣ = |‖f‖ − ‖f‖| = 0, for all f ∈ F ,

thus showing that ν is a substitute of LX for any ε ≥ 0. This example shows that

if F is too small, all possible measures will be substitutes of LX .

Example 4: Histogram. Let E = [0, 1], and take F to be the bounded Lips-

chitz functions, with supremum norm ‖f‖ = supx∈E |f(x)|, and Lipschitz constant

Lip(f) = supx,y |f(x)− f(y)| /(‖f‖ |x− y|). We set

F =
{
f : ‖f‖ <∞ and Lip(f) <∞}.

Let P = {Qi = ε[i, i + 1], i = 0, . . . , [1/ε] − 1} be a partition of E into intervals of

length |Qi| = ε, and set

histX(y) =
∑
Qi∈P

ε−11Qi(y)
(
#{xs ∈ Qi}/t

)
,

then ν(dy) := histX(y)dy is a probability distribution, and∣∣∣∣∫ fdLX −
∫
fdν

∣∣∣∣ =

∣∣∣∣∣1t
t∑

s=1

f(xs)−
∫
f(y)histX(y)dy

∣∣∣∣∣
=

∣∣∣∣∣∣1t
∑
i

∑
xs∈Qi

f(xs)−
∑
i

ε−11Qi(y)
(
#{xs ∈ Qi}/t

) ∫
Qi

f(y)dy

∣∣∣∣∣∣
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≤ 1
t

∑
i

∣∣∣∣∣∣
∑

xs∈Qi

ε−1

∫
Qi

f(xs)dy −
∑

xs∈Qi

ε−1

∫
Qi

f(y)dy

∣∣∣∣∣∣
≤ 1
t

∑
i

∑
xs∈Qi

ε−1

∫
Qi

|f(xs)− f(y)| dy

≤ 1
t

∑
i

∑
xs∈Qi

ε−1 ‖f‖Lip(f)
∫
Qi

εdy

≤ ε ‖f‖Lip(f).

Here we have an example of a nontrivial absolutely continuous measure ν which is

substitutable for LX to within accuracy ε.

Example 5: Gaussian kernel estimator. Let ϕε(x) = (2πε)−p/2 exp
(
−x2/2ε

)
be the Gaussian density function on Rp. For any X, the measure

ν(dy) =
1
t

t∑
s=1

ϕε(y − xs)dy

is absolutely continuous, and if we set F = {f : |||f ||| <∞}, where

|||f ||| = sup
x
|∇f(x)|/(1 + |x|),

then a straightforward calculation using the fundamental theorem of calculus gives∣∣∣∣∫ fdLX −
∫
fdν

∣∣∣∣ ≤ ε|||f |||(ε+
α

t

t∑
s=1

|xs|+ 1
)
, f ∈ F ,

where α =
∫
|y|ϕ1(y)dy. Thus ν is substitutable for LX to within an accuracy

which now depends on X.

3. Normalized target densities with tractable components

In this section, we consider a restricted class of tractable distributions on Rd,

whose normalizing constant is known. We shall apply the concepts of the previous

section to these distributions, which are formally defined below. In the next section,

we explore some available options when the normalization is unknown.

Definition 2. Let π̇(x1, . . . , xd) be a normalized probability density on Rd. We say

that π̇ has tractable components if for each i = 1, . . . , d, the conditional density

λi(xi |xj , j 6= i) := π̇(x1, . . . , xd)
/∫

π̇(x1, . . . , xd)dxi
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is completely known (including the normalization constant, which is dependent on

xj , j 6= i), and affords exact simulation.

Consider a fixed component i. We aim to discuss in this section the Approximate

Integration Problem for the i-th marginal density

π̇i(xi) :=
∫
· · ·
∫
π̇(x1, . . . , xd)

∏
j 6=i

dxj .

As the integral above is potentially very difficult, we cannot (and shall not) assume

that π̇i(xi) is known explicitly.

We state the following assumption:

Assumption (A): Let b be a nonzero even integer. For a = 1, 2, 3, . . . , b and

every x ∈ Rd, the function

µi(a, x) :=
1
a!

∫
(xi − z)aλi(z |xj , j 6= i)dz

is finite and exactly computable.

Our full analysis is split into several steps.

Substitution of LX . Take X = {x1, . . . , xt} ⊂ R
n to be a fixed point set,

which we use to define the substitute probability density νX(z) on R by

νX(z) :=
1
t

t∑
s=1

λi(z | xjs, j 6= i), z ∈ R.(2)

Since λi is completely known and allows exact simulation, so does νX . Note

also that νX is already normalized. When the set X is chosen to approximate

π̇(x1, . . . , xd), the density νX(xi) can be expected to approximate the marginal

π̇i(xi).

Next, if we are to substitute νX for LX , we need an error estimate. To this end,

consider a function f belonging to the set

F :=
{
f : R→ R, f is differentiable b times with ‖f (b)‖ <∞

}
,(3)

where
∥∥f (b)

∥∥ = supz
∣∣f (b)(z)

∣∣. From Taylor’s theorem,∣∣∣∣∫ f(xi)dLX(x1, . . . , xd)−
∫
f(xi)νX(xi)dxi

∣∣∣∣
≤

∣∣∣∣∣
∫

1
t

t∑
s=1

(f(xis)− f(y))λi(y | xjs : j 6= i)dy

∣∣∣∣∣
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≤

∣∣∣∣∣1t
t∑

s=1

b−1∑
a=1

f (a)(xis)µi(a, xs)

∣∣∣∣∣+
‖f (b)‖
t

t∑
s=1

µi(b, xs).

We shall denote the right hand side above simply by ei(f,X); it is straightforward

to compute. An application of the triangle inequality thus gives

(4)
∣∣∣∣∫ f(xi)dLX(x1, . . . , xd)−

∫
f(xi)π̇i(xi)dxi

∣∣∣∣
≤ ei(f,X) +

∣∣∣∣∫ f(xi)
(
νX(xi)− π̇i(xi)

)
dxi
∣∣∣∣ .

We now discuss the second term on the right.

Estimating the distance to target I. Recall that νX(xi) is meant as an

approximation of the unknown marginal density π̇i(xi). Similar approximations to

the full target density π̇(x1, . . . , xd) are also possible; among them, the following,

π̂X(x1, . . . , xd) :=
1
t

t∑
s=1

λi(xi | xjs, j 6= i)
d∏
k=1
k 6=i

λk(xk |xi;xl, l < k; xms ,m > k),(5)

deserves particular attention for the following reasons: firstly, it is explicitly com-

putable and aready normalized, and secondly, its i-th marginal is νX(xi). We may

therefore estimate∣∣∣∣∫ f(xi)
[
νX(xi)− π̇i(xi)

]
dxi
∣∣∣∣

=
∣∣∣∣∫ · · ·∫ f(xi)

[
π̂X(x1, . . . , xd)− π̇(x1, . . . , xd)

] d∏
j=1

dxj
∣∣∣∣

≤ ‖f‖
∫
· · ·
∫ ∣∣∣π̂X(x1, . . . , xd)− π̇(x1, . . . , xd)

∣∣∣ d∏
j=1

dxj .

In this bound, the integrand is now explicitly calculable for any choice of config-

uration x = (x1, . . . , xd). It is also straightforward to simulate from π̂: choosing

an initial configuration uniformly from X, we update the components by Gibbs

sampling, starting with the i-th component, and then taking the others in order.

A useful identity. The final ingredient in our analysis is based upon a useful

alternative description of the L1 distance, first reported in (Brooks et al., 1996).

Specifically, for any two densities p(x) and q(x) on Rd, we have∫
|p(x)− q(x)| dx = 2− 2

∫ (
p(x) ∧ q(x)

)
dx
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= 2− 2
∫ [

1 ∧ q(x)
p(x)

]
p(x)dx,

as can be easily checked on a diagram. Substituting q with π̇(x1, . . . , xd) and p

with π̂(x1, . . . , xd) respectively, we obtain the fundamental inequality

(6)
∫ ∣∣νX(xi)− π̇i(xi)

∣∣ dxi ≤ 2
∫ [

1− π̇(x1, . . . , xd)
π̂X(x1, . . . , xd)

]
+

π̂X(x1, . . . , xd)
d∏
j=1

dxj .

Estimating the distance to target II. At this point, it is no longer possible to

continue analytically. It is obvious however that we may proceed using probabilistic

methods and Monte Carlo approximation in particular. This may seem circular at

first, since we propose to estimate the Monte Carlo error, which depends upon the

distance from νX(xi) to π̇i(xi), by another Monte Carlo calculation, with its own

inherent error. However, we are in fact in a much better position to analyse the

latter.

Firstly, we know how to simulate from π̂X exactly, which gives us a supply of

independent random variables, and secondly, the integrand (in square brackets)

is bounded. This latter fact is crucial, for it allows an exact probabilistic error

analysis, originally due to Hoeffding (1963). In the following theorem, we therefore

propose a probabilistic resolution of the Approximate Integration Problem.

Theorem 3. Let π̇(x1, . . . , xd) be a properly normalized probability density on Rd

with tractable components and unknown i-th marginal π̇i(xi) =
∫
π̇(x1, . . . , xd)

∏
j 6=i dx

j.

For any X = {x1, . . . , xt} ⊂ Rd, we define a distribution π̂X by (5) on Rd. Choose

a finite i.i.d. sequence Z1, . . . , Zn from π̂X , and ε > 0. Then

P

[∫
|νX(x)− π̇i(x)| dx > ε+

2
n

n∑
k=1

(
1− π̇(Zk)

π̂X(Zk)

)
+

]
≤ exp(−2nε2).(7)

Consequently, if f is any bounded function belonging to the family F defined in (3),

and provided Assumption (A) holds, we have

P

[∣∣∣∣∣1t
t∑

s=1

f(xis)−
∫
f(x)π̇i(x)dx

∣∣∣∣∣
≤ ‖f‖

(
ėi(f,X) + 2ε+

2
n

n∑
k=1

(
1− π̇(Zk)

π̂X(Zk)

)
+

)]
≥ 1− e−2ε2n,
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where

ėi(f,X) = ‖f‖−1

[∣∣∣∣∣(1/t)
t∑

s=1

b−1∑
a=1

f (a)(xis)µi(a, xs)

∣∣∣∣∣+ (‖f (b)‖/t)
t∑

s=1

µi(b, xs)

]
.

Proof. Let Yk =
(
1− π̇(Zk)/π̂X(Zk)

)
+

; since these variables are IID and bounded,

Hoeffding’s (1963) estimate applies, to the effect that

P

[
1
n

n∑
k=1

Yk − EY1 > t

]
≤ e−2t2n.

Combining this with (6) gives the claimed results.

Remark 1. The one sided estimate (7) of the L1 distance in Theorem 3 can

be easily turned into a two sided estimate, which would give both upper and lower

confidence bounds on the distance from π̂X to the target π̇.

Remark 2. Suppose that the target π̇ is not properly normalized, in the sense

that only a funcion π(x) ∝ π̇(x) is available. If the normalizing constant can be

estimated from above, i.e. there exists a known constant a ≥
∫
π(x)dx, we obtain

straightaway the conservative estimate

P

[∫
|νX(x)− π̇i(x)| dx > ε+

2
n

n∑
k=1

(
1− a−1π(Zk)

π̂X(Zk)

)
+

]
≤ exp(−2nε2).(8)

Note however that this estimate does not tend to zero. As π̂X approximates π̇, the

bound above converges to the value 2
(
1− a−1

∫
π(x)dx

)
, which is only small when

the bounding constant a is sharp.

An upper bound a on the normalizing constant will be obtained in the example

in the next section, for which the following assumption holds:

Assumption (B): The target distribution π̇(x) is proportional to a function

π(x1, . . . , xd) = exp
( N∑
k=1

ϕk(x1, . . . , xd)
)
m(x1, . . . , xd),

where for each k, supz ϕk(z) ≡ ϕ̄k <∞ is bounded above, and m(x1, . . . , xd)

is a probability density which affords exact simulation. ++++++++++++

Remark 3. In Theorem 3, the boundedness assumption on f is required to

be able to use the L1 distance estimate. When f is unbounded but integrable, it

must in fact be effectively bounded, that is there exists a set of the form C = {f ≤

M} which contributes overwhelmingly to the integral. Call M an effective bound,

writing ‖f‖eff = M . The original unbounded integrand f can then be considered
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bounded for the purposes of Theorem 3, with a small loss in accuracy. We do not

pursue the details here, save to note that a plot of νX together with an analysis of

the tail behaviour of π̇i(xi) may help decide on a suitable constant.

Remark 4. The computational cost of the test is clearly at most proportional

to the size t of the point set X and thus scales well. For example, to get an estimate

of the L1 distance accurate from above to within 0.1, with an error probability of

0.01 requires from (7) the generation of n = 922 test random variables Zk, each

of which is generated at a cost proportional to t, followed by the evaluation of the

sample average, again at a cost proportional to t. Subsequently calculating the

substitution error ė(f,X) for any function of interest also has a cost proportional

to t.

4. Example

In this section, we discuss the ‘Rats’ hierarchical model of Gelfand et al. (1990),

which may also be found in the BUGS software distribution as example 1. Setting

N = 30 and T = 5, the target distribution factorizes as

(9) π̇(α1, . . . , αN , β1, . . . , βN , τα, τβ , τc, αc, βc) = C−1
N∏
i=1

T∏
j=1

π̇(yij |xj , αi, βi, τc)

× π̇(αi |αc, τα)π̇(βi |βc, τβ)π̇(τc)π̇(αc)π̇(τα)π̇(βc)π̇(τβ),

where

π̇(yij |xj , αi, βi, τc) =
√
τc
2π

exp−τc
2
(
yij − αi − βi(xj − x̄)

)2
,

π̇(αi |αc, τα) =
√
τα
2π

exp−τα
2

(αi − αc)2, π̇(βi |βc, τβ) =
√
τβ
2π

exp−τβ
2

(βi − βc)2,

π̇(τc) = Γ(a)−1baτa−1
c e−bτc1(τc>0), π̇(τα) = Γ(a)−1baτa−1

α e−bτα1(τα>0),

π̇(τβ) = Γ(a)−1baτa−1
β e−bτβ1(τβ>0), π̇(αc) =

√
δ

2π
exp−δ

2
α2
c ,

π̇(βc) =

√
δ

2π
exp−δ

2
β2
c ,

and a = b = 0.001, δ = 0.000001, x̄ = (x1 + · · ·+ xT )/T . The variables yij and xj

are constants which characterize the normalization factor C.



12 L.A. BREYER

Conditional distributions. From (9), we can also read off the full conditionals,

viz.

λαi(z |αc, τα, τc) =
√
σα
2π

exp−σα
2

(z − µα,i)2,

where σα = τα + Tτc and µα,i =
(
αcτα + τc

∑T
j=1 yij

)
/σα,

λβi(z |βc, τβ , τc) =
√
σβ
2π

exp−σβ
2

(z − µβ,i)2,

where σβ = τβ + τc
∑T
j=1(xj − x̄)2 and µβ,i =

(
βcτβ + τc

∑T
j=1 yij(xj − x̄)

)
/σβ ,

λτα(z |α1, . . . , αN , αc) = Γ(N2 + a)−1bN/2+a
α zN/2+a−1e−bαz1(z>0),

where bα = b+ 1
2

∑N
i=1(αi − αc)2,

λτβ (z |β1, . . . , βN , βc) = Γ(N2 + a)−1b
N/2+a
β zN/2+a−1e−bβz1(z>0),

where bβ = b+ 1
2

∑N
i=1(βi − βc)2,

λτc(z |α1, . . . , αN , β1, . . . , βN ) = Γ(NT2 + a)−1bNT/2+a
c zNT/2+a−1e−bcz1(z>0),

where bc = b+ 1
2

∑T
j=1

∑N
i=1

(
yij − αi − βi(xj − x̄)

)2,

λαc(z |α1, . . . , αN , τα) =
√
σc,α
2π

exp−σc,α
2

(z − µc,α)2,

with σc,α = δ +Nτα and µc,α =
∑N
i=1 αi/σc,α, and finally

λβc(z |β1, . . . , βN , τβ) =
√
σc,β
2π

exp−σc,β
2

(z − µc,β)2,

with σc,β = δ +Nτβ and µc,β =
∑N
i=1 βi/σc,β .

Normalizing constant. To calculate the normalizing constant, we proceed as

follows: write for n = 0, . . . , N,

ϕn(α1, . . . , αN , β1, . . . , βN , τc) = exp−τc
2

n∑
i=1

T∑
j=1

(
yij − αi − βi(xj − x̄)

)2
,

and define also the unnormalized probability densities

mn(α1, . . . , αN , β1, . . . , βN , τc) = ϕn−1(α1, . . . , αN , β1, . . . , βN , τc)

·
n∏
i=1

π(αi |αc, τα)π(βi |βc, τβ)ḣ(τc)π̇(αc)π̇(τα)π̇(βc)π̇(τβ),
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where

ḣ(τc) = Γ(a+ 1
2 )−1ba+1/2τa+1/2−1

c e−bτβ1{τc>0},

and as per our convention ṁk(x) = mk(x)/
∫
mk(x)dx. Then we have

logC = −1
2

(NT log 2π − log b) + log
Γ(a+ 1/2)

Γ(a)
+ log

∫
ϕN (x)ṁ1(x)dx

= −1
2

(NT log 2π − log b) + log
Γ(a+ 1/2)

Γ(a)
+

N∑
k=1

log
∫
eψk(x)ṁk(x)dx,

where

ψk(α1, . . . , αN , β1, . . . , βN , τc) = −τc
2

T∑
j=1

(
ykj − αk − βk(xj − x̄)

)2
.

It is impractical to compute the integral
∫
ϕN (x)ṁ1(x)dx directly, for the integrand

ϕN (x) = exp
∑N
k=1 ψk(x) is vanishingly small. Since the functions ψk are much

smaller in magnitude than the full sum
∑N
k=1 ψk, the series of integrals with respect

to ṁk is easier to calculate, and yields numbers of manageable size, for which a

simple error approximation based on Hoeffding’s bound is feasible. For each k,

suppose we generate Zk1, . . . , Zkr IID variables with density mk. Since we have

ψk ≤ 0, we must have

P

[∣∣∣∣∣
∫
eψk(x)mk(x)dx− 1

r

r∑
s=1

eψk(Zks)

∣∣∣∣∣ < δ

]
≥ 1− 2e−2rδ2

,

and this gives a simple procedure for choosing the number r of samples according

to the accuracy required. In the sequel, we shall take r large enough so that

δ ≤ ε
(

1
r

∑r
s=1 e

ψk(Zks)
)

and 2rδ2 ≥ − log ε, for ε = 0.1. Note again that this

strategy is only practical (i.e. r is of a reasonable magnitude) provided that the

typical values of eψk(Zks) are not vanishingly small, which is the whole point of

splitting the original integral. It remains to discuss how to generate IID random

variables Zks ∼ ṁk.

Assume that for each k = 1, . . . , N , the probability density ṁk exists on its own

copy Ek = R
65 of the state space. We define a probability distribution Π(dy) =

(1/N)
∑N
k=1 1Ek(dy)ṁk(y)dy on the N -fold disjoint union E = E1 ∪ · · · ∪ EN ,

noting that ṁ1(x) can be sampled from exactly. Define a Markov chain Xt with

stationary distribution Π on E as follows: If t is even and Xt ∈ Ek, k > 1, then

Xt+1 is obtained from Xt by one sweep of the Gibbs sampler corresponding to ṁk.
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If k = 1, then Xt+1 ∼ m1 exactly, and independently of Xt ∈ E1. If t is odd and

Xt ∈ Ek, then Xt+1 is projected onto Ek±1 with probability 1
2 · 1∧ exp±ψk(Xt) (if

k falls outside the set {1, . . . , N} we do nothing). This is analogous to simulated

tempering (see Moller and Nichols, 1999). Since the chain Xt regenerates whenever

Xt ∈ E1, we may use the ROCFTP method (Wilson, 1999) to identify random

times when Xt is in equilibrium. This produces a stream of independent random

variables from all the distributions mk.

More precisely, let q ≥ 2N denote a fixed number of iterations, and partition the

sample path Xt into the sections X[0,q) = {X1, . . . , Xq}, X[q,2q) = {Xq+1, . . . , X2q},

etc. For each such section, the path X[tq,(t+1)q) is merely one among the collection

of paths starting from all possible initial states in E at time tq and utilizing the

same realized source of randomness as X[tq,(t+1)q). With probability 1/2, when

s ∈ {tq+ 1, . . . , (t+ 1)q} is odd, all such paths are projected from Ek to Ek−1 since

ψk ≤ 0 for all k. Alternatively, with probability 1/2, some paths are projected from

Ek to Ek+1 while others reject the change. If all possible paths reach E1 before

time (t+ 1)q, we say that coalescence occurs in the interval [tq, (t+ 1)q), since all

possible paths are identical from then on. It coalescence occurs in [tq, (t + 1)q),

then Xtq ∈ Ek is an IID sample from mk provided simply that this is not the very

first coalescence since the beginning of the simulation.

5. Unnormalized target densities with tractable components

In this section, we propose various extensions of Theorem 3 to the case of target

densities π̇(x) whose normalization constant is not computable. Instead, we shall

use an unnormalized version π(x), which satisfies π̇(x) = π(x)/
∫
π(x)dx. This

requires a tradeoff which translates into a loosening of the bound on L1 distance

developed in (7), and a possible increase in the complexity of the required calcula-

tions.

Exact Simulation. We state here without proof a simple modification of The-

orem 3 which applies whenever random variables can be simulated from π̇ exactly.

It is based on the following inequality

∫
|π̂(x)− π̇(x)| dx ≤

∫∫
|π̂(x)π̇(y)− π̇(x)π̂(y)| dxdy(10)
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= 2
∫∫ [

1− π(y)π̂(x)
π(x)π̂(y)

]
+

π̇(x)dx π̂(y)dy.

Note that the integrand in square brackets only involves the unnormalized density

π(x). The L1 distance from π̂(x) to π̇(x) bounds the distance from νX(xi) to π̇i(xi)

as in (6), so we have

Theorem 4. Let π(x1, . . . , xd) be any unnormalized probability density on Rd with

tractable components. For any X = {x1, . . . , xt} ⊂ Rd, we define a distribution π̂X

by (5) on Rd. Choose a finite i.i.d. sequence Z1, . . . , Zn from π̂X , an i.i.d. sequence

Z ′1, . . . , Z
′
n from π̇, and ε > 0. Then

P

[∫
|π̂X(x)− π̇i(x)| dx < 2ε+

2
n

n∑
k=1

(
1− π(Zk)π̂X(Z ′k)

π(Z ′k)π̂X(Zk)

)
+

]
≥ 1− e−2ε2n.(11)

When exact simulation from π̇(x) is feasible, several well established alternatives

to Theorem 4 are possible. In particular, the classical Central Limit Theorem can

be invoked on any test function f as discussed at the beginning of Section 2. We

note however that in so doing, the variance
∫
|f |2 dπ must itself be estimated, while

no such secondary estimate is required in Theorem 4. Moreover, it is arguable that

(11) is more informative than a combination of estimated means and variances.

The assumption that π̇ affords exact simulation is however highly specialized, thus

undesirable, and we consider next a strategy which does not require it.

Minorization. An interesting connection appears upon inspection of (10),

namely that the bound on the right is twice the average rejection probability for

an Independence Sampler with target π̇(x) and proposal distribution π̂(x). It is

well known (Mengersen and Tweedie, 1996) that this sampler is uniformly ergodic

if and only if

βX = inf
x∈Rd

{ π̂X(x)
π(x)

}
> 0.(12)

Whenever this holds, we can use the simple bound

2
∫∫ [

1− π(y)π̂(x)
π(x)π̂(y)

]
+

π̇(x)dx π̂(y)dy ≤ 2
∫ [

1− βX
π(y)
π̂(y)

]
+

π̂(y)dy,

and derive a statement similar to (8).

The situation is not so simple however, as can be seen in a particular case, when

π̂X is replaced by its defining expression (5), and i = 1, d = 3. We then have
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π̂X(x1, x2, x3)/π(x1, x2, x3)

=
1
t

t∑
s=1

λ1(x1 | x2
s, x

3
s)λ2(x2 |x1, x3

s)λ1(x3 |x1, x2)/π(x1, x2, x3)

=
1
t

t∑
s=1

λ2(x2
s |x1, x3

s)λ3(x3
s |x1, x2)/π(x2

s, x
3
s).

From this, it appears that (12) can hold only if both λ2 and λ3 are bounded

away from zero as we let x1 and x2 vary over the plane, which severely limits the

dependence of λ2 and λ3 upon their respective parameters.
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