STOCHASTIC CALCULUS

Honours Project Report

Laird Breyer, B.Sc., B.A.
Department of Mathematics
University of Queensland

Supervisor: Dr. P. K. Pollett

November, 1994



Preface

The importance of the martingale concept cannot be overem-
phasized. [...] Martingales, Markov dependence and stationarity
are the only three dependence concepts so far isolated which are
sufficiently general and sufficiently amenable to investigation yet
with a great number of deep properties.

M. Loeve. Ann. Probab. (1973) vol. 1, no. 1, p.6

This project report deals with the stochastic calculus of semimartingales.
In Doob’s classical book [Doo53|, the semimartingales are processes which
we nowadays call submartingales. The change in terminology was heralded
in the preface of Loéve’s third edition (1962) of his book Probability Theory
[Loe7T].

A quarter of a century after Doob’s book, the term semimartingale reap-
pears on the scene, this time in Meyer’s classic “Course on Stochastic Inte-
grals” [Mey76]. Had Loéve written the lines at the top of this page a few
years later, he would have doubtlessly included semimartingales in his list.

Historically speaking, there are two ways of dealing with stochastic pro-
cesses. One is via their transition probabilities, and the other is by di-
rectly dealing with their sample paths. The first approach was favoured in
the early days; researchers in stochastic processes routinely deal with paths
which would horrify a typical nineteenth-century analyst! With the advent
of Stochastic Calculus however, the sample path approach gained currency.

The first part of this report deals with the construction of the stochastic
integral. We look at what it means to write

b
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when both H and X are random functions of s: stochastic processes. Wiener
was the first on the scene; having spectacularly constructed a mathematical
model of Brownian motion in [Wie23|, he went on to define the integral
when H is an ordinary deterministic function and X is Brownian motion.
The interpretation is as one would expect: a weighted sum (by H) of small
increments of X. To do this, he surmounted a fundamental difficulty: the
paths of X are of unbounded variation on every time interval, so that the
integral above is most definitely not a Riemann-Stieltjes integral. But the
real breakthrough came with It6 (see [1t651]) who recognized that to integrate
random functions H, the process H must not be allowed to anticipate the
process X. Itd6 went on to prove his famous theorem, a kind of fundamental
theorem of calculus for his integral.

Suddenly, stochastic integration became useful. By interpreting the Brow-
nian motion as the cumulative effect of many small random perturbations,
an integral of “white noise”, it became possible to study systems under the
influence of randomness in the same way that Newton had studied systems
under the influence of nonrandom forces. It6’s integral with respect to Brow-
nian motion spawned new eras in population dynamics, filtering and control,
and mathematical finance, to name but a few.

But probabilists did not stand still. Doob recognized that the integral
depended on the martingale property of Brownian motion. Later work by
Kunita-Watanabe showed that the integral could be localized, so as to in-
crease the available number of integrating processes. When Meyer wrote
his course on stochastic integrals, the theory had essentially taken its defini-
tive form. But it was technically very complicated. It took a hundred and
fifty pages to explain, and presumed known some important theorems about
stochastic processes.

The following years were spent gradually simplifying the theory (and,
much more importantly, applying it with spectacular success). The first part
of this thesis presents the theory in a way which I believe is about as short and
as simple as possible, while still keeping it very powerful. There is a simpler
way, due to Protter in [Pro86] (recommended reading!), but his exposition
is at the expense of developing a “Riemann integral” instead of a “Lebesgue
integral”.

Here’s an outline of what we’ll do in Part I: Processes are introduced as
functions on R, x Q, where (2, F,P) is our probability space. Next, the

i



space R, x () is endowed with a o-algebra, called the predictable o-algebra
P. The P-measurable functions represent the nonanticipating processes of
It6’s theory. Sets of the form |S, T, where S, T" are random stopping times,
are seen to belong to P. An integrating process is any process X which
induces an L'(Q, F,P)-valued measure px on P such that

/Lx(]S, T]) = XT — Xs.

The integration theory of such measures is recalled. It is the Dunford and
Schwarz vector integration theory ([DS58], section IV.10). Processes which
induce a measure are characterized. Although their sample paths are quite
often of unbounded variation, they have a bounded “probabilistic” varia-
tion. They are the semimartingales, and may also be thought of as processes
which have a decomposition into a “signal” and a (generalized) “noise”. The
fundamental theorem of calculus (It6’s formula) for semimartingales is inves-
tigated. It takes the form

¢
F(Xy) = f(Xo) +/0 f'(X,)dX, + “deviation”.

Attention is focused on the “deviation” and methods for computing it are
found. Its existence is directly related to the unboundedness of the variation
of the sample paths of X.

The idea of considering stochastic integrals as Dunford-Schwarz vector
integrals is not new. The classic reference for this seems to be [Kus77],
but its simplicity appears to be lost to probabilists. When pressed for a
quick development of stochastic integration, all seem to fall back on the
“isometry approach” (see notes at end of Part I) and mention in passing
that using vector measures is nice, but much more complicated. This is
of course true when the vector measures are considered with values in the
Orlicz space L°(Q, F,P). This is why Protter considers the integral as a
continuous linear functional on random processes with values in L°(Q, F, P).
See [Pro86, Pro92|. I will attempt to show that the vector integral approach
can be very simple when the measures are restricted to have values in the
Banach space L'(2, F,P) instead of L°(2, F,P). The approach was inspired
by the book [KK76], and is quite close to [Kus77], though I believe simpler.

We will consider a semimartingale X = N + A, where N is a generalized
“noise”, and A a “signal”. The process f(X) turns out to be again a semi-
martingale, with decomposition N’ + A’. Furthermore, It6’s formula gives
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an explicit expression for N’ and A’ in terms of f and X! This is best seen
through a very simple example: suppose X is a Brownian motion. We've
earlier interpreted it as X; = fot &sds, where &, represents a background ran-
dom fluctuation at time s. If we apply the function f(z) = z? to X, Itd’s
formula gives

t
Xf:X§+2/ X dX; +t.
0

Here the deterministic process t is the “deviation” mentioned earlier, whereas
the middle term is again generalized “noise”. By our interpretation of X, we
have Xy = 0. Thus if we take expectations, we get

EX? =t

a familiar result for Brownian motion. We will now have some idea about the
behavior of the process X7?. It should essentially be “noise” superimposed on
the increasing function ¢ — t. Furthermore, in Part II we will see that the
“noise” process f(f X;dX; is in fact the same Brownian motion X, running
on a different (random) time scale. This is essentially Lévy’s celebrated
characterization of Brownian motion. In Part II we will prove that any
martingale with continuous paths is a time-changed Brownian motion.

Some of the sections in the first part are marked with the symbol x. This
is to indicate that they are vital to a proper understanding of stochastic
integration. The symbol *x is reserved for the It6 formula, without which
stochastic calculus is at best an exercise in futility. The impatient reader
should at least go through these sections, perhaps skipping at first the proofs
of the theorems. The other sections can be omitted at your own risk and
peril! The first three sections on stochastic processes and stopping times are
only intended as a review (or a crash course, depending on the reader...)
of the concepts which pervade the rest of this report. They can be quickly
scanned and later referred to. Most other sections, especially in Part II,
are written so that they can be read more or less independently, although
obviously to a lesser extent in Part I.

The origins of the proofs presented are indicated in the statements of the
theorems, except in a few rare cases where the proof is so simple that I give
my own.

Exercises, as P. A. Meyer once wrote, have been placed throughout the
text in the form of errors.
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It is a pleasure to thank my supervisor, Phil Pollett, for letting me roam
around the literature in complete freedom. When I started the year, I knew
nothing about stochastic processes. Now, I like to think that I have a minus-
cule idea of what is happening. I certainly believe that random processes are
now ready to, and should, form an integral part of the paradigms of dynam-
ics. He also deserves thanks for pointing out to me some of the idiosyncrasies
of the English language; the present copy of this report undoubtedly still
contains a number of obscurities. Thanks go also to Michael Nielsen, who
consistently reminded me to make the theory understandable, and to many
others in the Honours Room for patiently listening to my expositions of the
theories I encountered.

It is time to begin. We follow the advice K.D. Elworthy gives in his book
[Elw82]:

“DON’T PANIC”

Hitchhiker’s Guide To The Galaxy
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Part 1

Stochastic integration



x Introduction

This chapter is about the concept of stochastic integral. The basic problem we
will look at is to try and make sense of an integral where both the integrand
and integrator are stochastic processes. Motivation for this problem comes
from a large variety of sources. An especially simple example is the following,
taken from population dynamics: let N(¢) denote the size of a population at
time ¢, and a(t) be the relative rate of growth. A simple model for the size
of this population is

aN
dt

the solution of which is given by

t
log N(t) —log A = / a(s)ds.
0

What if, however, a(t) is subject to various random environmental effects,
so that a(t) = r(t) + “noise” (t), say? The obvious (formal) answer is to write

t t
log N(t) —log A = / r(s)ds + / “noise” (s)ds.
0 0

The second integral is an example of a stochastic integral. The way we
interpret it determines the properties of the “solution” N ().

Stochastic processes

Our first task is to make precise the notion of “noise”(¢). As this will ob-
viously involve the theory of stochastic processes, we first need to set up a
proper framework.

Let (2, F,P) be a probability space. Technically, we will always assume
that it is complete, i.e. if B C A € F with P(A) = 0, then B € F with
P(B) = 0. This will simplify the presentation, and it is well known that
every probability space can be completed.

Let T be a set, (E,B) be a measurable space. A stochastic process is a
function X : T x Q — E, such that X(¢,-) is (B, F)-measurable for each
t € T. Unless otherwise stated, we will take £ = R with B = B(R) being the
Borel sets. Thus X (¢,-) is a real-valued random variable for each t € T. The



set T of course represents time, and will be taken as R, = [0, oo, unless an
explicit statement to the contrary is made.

If we fix w € Q, then the function X; : t — X (¢,w) is called a sample path
of X. It is often convenient to denote the process X by (X;)icr, or simply
(X).

In the same way that we often identify functions which are equal almost
everywhere, we say that two processes X and Y are modifications (or ver-
sions) of each other if P(w : Xy(w) = Yi(w)) =1 for all t € Ry.

A stronger condition is that X and Y be indistinguishable: we require that
P(X; =Y, forallte R,) = 1. When two processes are indistinguishable,
they have a.s. the same sample paths. If they are versions of each other,
their sample paths need not be the same. Indeed, we will often assume
a process to have right continuous paths; we then say that the process is
right continuous. Similarly, an increasing process is one which has almost
all paths increasing (the word increasing is always used in the weak sense of
nondecreasing). In such a case, it will be understood that we have chosen
a version with right continuous paths. More generally, most equations in
the rest of this chapter involving random variables will hold only a.s., and
equations involving processes will only hold up to evanescence (a set A C
R, x Q is called evanescent if P(w : (t,w) € A) = 0).

Given a process X with right/left-hand limits, we are also often interested
in the following processes:

e The right/left continuous version X, defined by (X4); = X4, with the
convention X, = Xj.

e The jump process AX = X, — X_.
e The continuous part X¢ =X — AX.
e The mazimal process X; = sup,<; | X,|.

e The limit X, defined by X (w) = limy_, o Xi(w) on {w : lim X;(w) exists},
and Xo(w) = 0 otherwise. Note that X, is a well-defined random
variable, since both lim sup X; and lim inf X; are random variables and
hence {w : limsup X; = liminf X;} € F.



Filtrations and stopping times

A filtration (Fi)i>0 on (2, F,P) is an increasing family of sub-o-algebras of
F, i.e. such that for all s, ¢ € R, the inclusion F, C F; holds whenever
s < t. If the following two conditions are also satisfied, we say that (F;) is a
standard filtration:

o The F; are right-continuous: F; = Fpy := ﬂs>t Fs.
e Fy is complete: it contains all the P-null sets of F.

It is sometimes useful to write Fo, = V;>0F;, the smallest o-algebra
containing the whole filtration. The filtered probability space (€2, F, (F;),P)
(also called a stochastic basis) is said to satisfy the usual conditions if (F;)
is standard. Henceforth, we shall assume that the usual conditions hold.

We say that a process (X;) is adapted to the filtration (F;) if X(-) is
Fi-measurable for every t € R,. Thus the complete history of the process
up to time ¢ is contained in the o-algebra F;. More precisely, by associating
an “observer” with (F;), the collection F; contains all the questions about
X that this observer may ask up to time ¢. In particular, note that if X is
(F)-adapted, then X, is F-measurable.

A random variable T :  — R, is called a stopping time with respect
to (F) if the sets {T' < t} € F,; for each ¢t € R;. Since (F;) is a standard
filtration, this is equivalent to requiring {T" < t} = U, cqrpo 17" < s} € Fi.

Thus, the filtration must “know” by time ¢ whether 7" has occurred or
not. Associated with every stopping time 7' is a o-algebra Fr, consisting of
all sets A € F such that

AnN{T <t} e F forallteR,.

Thus Fr consists of all events which may be known to occur up to the time
T.

Of course, if T' is a stopping time, then Xrl{r. o} is Fr-measurable.
This is seen by noting that the r.v. X is for each ¢ the composition of ¢ :
{T <t} >R, xQ, wr (T(w),w), which is (F;, B([0,t]) ® F;)-measurable,
and X : R, x Q@ — R, which is (B([0,t]) ® F;, B(E))-measurable. Thus
{X7 € B}n{T <t} € F, for each B € B(E).

If T is the constant time 7'(w) = s for all w, then we clearly have Fr = F;.



Processes and stopping times

The reason such a random variable is called a stopping time is that it can be
used to decide whether a process has been stopped. More precisely, if X is
an adapted process, define

X (W) = Xinrw) (@) = Xelgery + Xrlirey,

and
X" () = Xinrw)— (W) = Xelgery + Xr-1ir<yy.

Then X7 is again adapted to (F;) as can be checked and it is called the
process stopped at time T. We call X7~ the process stopped strictly before
time 7. Note that it is common in stochastic processes to use the notations
z Ay =inf(z,y) and = V y = sup(z, y).

An important class of stopping times are the first hitting times of a set.
For example, let B be an open set and define 7" = inf{t : X; € B}. If X
happens to have right-continuous sample paths, then writing

{T <t} = U {X; € B},

s€QN[0,¢]

and noting that {X,; € B} € F;, we see that T is a stopping time. We will
often be using this result for the special case

T =inf{t: |X,| > n}.

We can also manufacture new stopping times from old ones: If S and T
are stopping times, then SAT, SVT, and S+ T are stopping times, a result
which is customarily left to the reader.

Finally, we need to mention stochastic intervals. Given two stopping
times S and T, we can define the stochastic interval

1S, T ={(t,w) e Ry xN:S(w) <t<T(w)},

and similarly [S, T, [S,T[, and |S,T[. The reason for mentioning this is that
by our definition, stochastic intervals are always subsets of R, x 2. So when
dealing with stochastic intervals, we have, for example, [0, co] = Ry x Q, not
as we might expect [0,00] = R, x Q.

We say that a stopping time 7' is predictable if there is a sequence of
stopping times (7},) such that 7, 1 T and T,, < T on {T > 0}. For example,
the time 7" = oo is predictable. But the time 7 of the first jump of a PP ()
(see later) is not predictable.



* Brownian motion

Now that we have the proper language to discuss stochastic processes, let us
return to our noise process, n(t,w) say. It is now obvious that an integral

/Ot n(s,w)ds

should represent some stochastic process. We will see later that it can be
identified with a well-known process: the Wiener process, or Brownian mo-
tion (BM). Formally, we say that a process B : Ry x Q@ — R?¢ is a d-
dimensional Brownian motion starting at v € R if

e B is adapted to (F;), has continuous sample paths and By = = a.s.

e Forevery s < ¢, the increment (B;— B;)(w) is independent of F; and has
a normal distribution with mean zero and covariance matrix (¢t — s)C
for some fixed C.

To simplify things, we will henceforth assume C' is the identity matrix.
A process B as above will be referred to by the symbol BM?(R?). The
construction of BM?®(R?) is given in all standard textbooks on stochastic
processes, so we will not repeat it here.

Note however that given an arbitrary stochastic basis (2, F, (F),P), a
BM*(R?) may not exist. In fact, the “minimal” stochastic basis is given
by Q@ = C(R,,R?), the space of continuous functions from R, to R?, F;, =
ow(s):s<t, weW),F=2F, and P=W, called the Wiener measure,
which is the unique measure on (2, F) such that for any 0 = ¢y < t; < ... <
tr € Ry, By,...,By € B(Rd),

W(W(to) € B(), ... ,W(tk) € Bk) =
/ 5w(d$0)/ p(0, 20,1, dz1) .. / p(tk—1, Th1, th, dTy),
By B, By,

where

p(s,z,t,B) = / (2r|t — S|)—d/2€—|y—x|2/z|t_s\dy’
B

and 0,(B) = 1p(x) is the Dirac measure. The process B is then defined by

Bi(w) = w(t).



This is called the canonical Brownian motion.

If we write By(w) = fot n(s,w)ds, we see that we can formally solve
stochastic differential equations such as the one in the introduction by having
a theory of integrals fot Hg(w)dBs(w) where H and B are processes. In par-
ticular, the equation in the introduction makes sense as an integral equation

/Ot dN,(w) = /OtT(S)Ns(w)ds - /Ot N, (w)dB,(w),

where B is a BM°(R).

The Poisson process

BM?*(R?) is a continuous process. It will be useful, mostly for examples,
to consider a process which doesn’t have continuous paths. A process N is
called a Poisson process with rate A > 0 relative to (2, F, (F), P) if

e It is adapted to (F;), has right-continuous paths and Ny = 0 a.s.

e For every s < t, the increment (N; — N,)(w) is independent, of F; and
has a Poisson distribution with mean A.

Such a process will be referred to by the symbol PP()). As for the BM®(R?),
there exists a canonical representation of PP()). Choose Q@ = D(Ry,Z,),
the set of right-continuous functions from R, to Z, with left limits at every
t > 0. Take F; = o(w(s) : s < t,w € Q), F = Fy and P is generated, as for
BM?*(R?), by

P(w(to) € By,...,w(ty) € Bg) =

50(d$0)/ p(0, o, t1,dry) . / p(tr—1, Th1, th, do),
Bo B By
except that now, for any B C Z,

p(s,z,t,B)= Y oA A= 5)"

|
ke(B—z)NZ 4 k!

The process Ni(w) = w(t) is the canonical PP()\) on (Q, F, (F),P).



* Lebesgue-Stieltjes integrals

Now that we know that we want to integrate processes with respect to pro-
cesses, how do we go about it? If (H;) is the integrand and (X;) is the
integrator, what is the meaning of the expression

[ e

At first glance, the answer seems simple: for each w € (2, integrate sepa-
rately and then combine the results into one random variable. Since X(w)
is a “path” for each w, the obvious approach is to take a Lebesgue-Stieltjes
integral (w.r.t. t) of Hy(w) over the path X(w).

Unfortunately, this doesn’t always work, for in Stieltjes integration, the
paths t — X;(w) must be of bounded variation. When this is not the case,
the approximating sums

ZHTi (XtH—l - Xti) )

JAVS
taken over partitions A, = {a =tg <70 < t; < --- <7, <ty = b} with
|A,| = sup; |tir1 — t;| — 0, do not converge.

Well, the one process we certainly do want to integrate (and use as inte-
grator), the BM, does not have paths of bounded variation on any interval
[a, b]. To prove this, we first need the following result, which will also be very
useful later:

The quadratic variation of BM°(R)

THEOREM 1. [Pro92] Let (A,) be a sequence of refining partitions of [0, ]
with mesh |A,| — 0, then lim, >~ (By,,, — By,)* = t, where convergence is
in L2(Q, F, P).

PROOF:
Z(Bti+1 - Btz‘)Q —t= Z (Bti+1 - Bti)Q — (tiy1 — tz)) = ZY;’
Ay Ay Ay

where the Y; are independent with EY; = 0. So

E (Z(BtiH - Bti)Q - t) =K (Z Y;) = ZEY;Q

An
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Next, notice that if we set Z7 = (By,,, — By;)?/(ti+1 —t;), then the Z; are
all N(0,1) variables, so E(Z? — 1)? = K say, for all i. Then

E(Z(Btm B;.) —) _KZ i1 — )2 < K|At,

An

and since this tends to zero as n — oo, we have our result. O

The variation of BM°(R)

THEOREM 2. [Pro92] The paths of Brownian motion are a.s. of infinite varia-
tion on any time interval.

PROOF: For any interval [a,b], the variation of BM on [a, b] is

- sup Z |Btz+1 Btz ( ) |

where A ranges over all finite partitions of [a, b]. Our goal is to show
P(VP=0c foralla,beR,)=

But {VP =00 foralla,be = VP = oo}, which is a countable
a a,beQy

intersection. Thus it suffices to show P(V? = o0) = 0 for a, b € Q.. By the
previous result, there are partitions (A,) such that

b—a = hmz By, — By,)’

< lim sup |By,,, — By| - V.
" tEA,

By the a.s. continuity of the sample paths of BM, this implies b —a < 0
on the set {w: V?(w) < 0o}. But we assumed b > a, so P(V? < 00) =0. O

An obvious corollary of the above is that the paths of BM°(R) are a.s.
nondifferentiable everywhere. By contrast, since the paths of the PP()\) are
increasing, they have finite variation on any interval.



* Naive stochastic integration is impossible

Why exactly can’t we use Stieltjes integrals f; h(z)dF(z)? Why does the
assumption of bounded variation on F' become so important? Can we by-
pass it? The proof of the following result points the way. Recall that for
continuous integrands on a finite interval, the Lebesgue-Stieltjes integral can
be approximated by Riemann-type sums.

THEOREM 3. [Pro92] Let (A,,) be a refining sequence of partitions of [a, b]. If
the partial sums

Su(h) =Y h(te) (F(trs1) = F(te)

converge to a limit for every continuous function h, then F' is of finite variation
on [a, b].

PROOF: Let X be the Banach space C|[a, b] of continuous functions with
norm ||f|lec = max{|f(z)| : x € [a,b]}. Let S, : X — R be the linear
operator given by

Su(f) =Y Fte) (F (i) — Flts))-

It is easy to construct a function ha, € X with ||ha, |l = 1 and such
that

ha, (te) = sgn (F(tks1) — F (i) -

This means that

[1Sull > [Su(ha, )l = Y [F(trra) — Ft)],

An

and hence sup,, ||S,|| > (total variation of F on [a, b]).

But since by assumption lim,, S, (h) exists for each h € X, we have that,
for each h, sup,, |S,(h)| < oo. By the uniform boundedness principle, this
means that sup,, ||S,|| < oo which proves the theorem. O

Although this theorem paints a bleak picture, notice that the function
ha, which creates the trouble depends on the exact behaviour of F(ty1) for
its value at time . It “knows” what F' is going to do in the future! The
insight of stochastic integration is to ignore any process H such that Hy can
predict X; for t > s. Thus H must be adapted to the filtration generated by
X. This is essentially what we will do next.
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* Predictable o-algebras and processes

Our goal is to define an integral fot H,dX, for processes X and H defined
on R, x €2, or more generally, on a stochastic interval. We start with a few
o-algebras.

Let Py be the collection of sets in R, x {2 of the form

[So, 0]U]S1, Th] U - - - U] Sy, T,

where the S; and 7; are stopping times. It is easy to see that Py is an algebra
on Ry x €, called the predictable algebra. We naturally let P = o(P;), and
call it the predictable o-algebra. Note that both Py and P are closely related
to the filtration on w.

A function H : Ry x 2 — R is called predictable if it is 7P-measurable.
Note that if S, T are arbitrary stopping times, then

[S,T) = JIS+1/n,T) € P,

n

and if 7" is predictable with announcing sequence 7, 1 7', then

1S, T[= IS, T.] € P.

n

The following theorem is of much practical value:
THEOREM 4. [RY90, CW83] P is generated by any of the following:
e Py: sets of the form [Sy, 0]U]Sy, T1] U - - - U]S,, Ty,
e P,: stochastic intervals [S, T,
e Py: stochastic intervals [S, T'[ where T is predictable,

e P;: sets of the form {0} x FyU]sy, 1] x Fy U ---Ulsy, t,] X F,, where s;,
ti € Ry and F; € Fy,,

P4: adapted processes which are continuous on [0, 0o,

Ps: adapted processes which are left-continuous on ]0, ool.

11



PROOF: P = o(P;) because [S,T] € P and |S,T] = [0,T]\[0, S].

P = o(P,) because [S,T[€ P and [S,T] = U,[S,T + 1/n[, where the
T + 1/n are clearly predictable.

0(Py) C o(Ps) because the random variables defined by T'(w) = t1r(w)
and S(w) = slp(w) + ocolg\r(w) are stopping times with |S,T| =|s,t] x F,
and similarly S(w) = colg\g(w) yields [S,0] = {0} x G.

o(P;) C o(Py) because first |S, T —]0 T], then 10, 5], ]0,7] =,]0,T +
1/n], and finally

o0

10,7 +1/n] = | JIk/n, (k +1)/n] x {T > k/n},
k=0

where {T' > k/n} = {T < k/n} € Fin)-

o(P3) C o(P4) because it is easy to find continuous functions f, on Ry
which converge pointwise to 1j,,,], so that 1 f;, — 1j4,,xF, and similarly for
Lioyxa-

o(Ps) C o(Ps) is trivial.

o(Ps) C o(P;) since if X is a left-continuous process, it is the pointwise
limit of

Xs"(w) = Xo(w)1{0}(s) + ZX(k/n) L/ (k+1) m)(S)-

O
The term “predictable o-algebra” comes from the fact that it is generated
by left-continuous processes, i.e. processes which can be predicted at time ¢
if they are known at all earlier times s < ¢.
If A is a predictable stochastic interval, we can also define PyA = PN A,
and then PA = o(PyA) = P N A. For example, if A =[S, T], we have

Po[S, T = {[Us, SJVJU1, Vi]U -+ - U|Up, V] : S < U, V; < T},

as expected.

* Processes generate elementary integrals

Let X be an (F;)-adapted process. For every stopping time 7', X is thus
an element of L°(Q, Fr,P), the vector space of (P-equivalences of) real Frp-
measurable random variables.
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Now consider the additive set function pux : Py — L%(Q, Foo,P) (re-
spectively ux : PolS,T] — L°(Q, Fr,P) etc., we won’t keep track of the
possibilities) defined by the formulae

px (U, V]) = Xy — Xy, ux ([U,0]) = 0.

This looks suspiciously like a measure, albeit one with values in L°(2, F, P).
If fis a Py[S,T]-simple function, say f = >, a;14, where the a; € R,
A; € Py[S, T], then we can easily write

/fdux = ZaiMX(Ai);

and as usual this does not depend upon the representation of f. This elemen-
tary integral is now a random variable, not a single real number anymore. A
little bit of thought and an application of the previous theorem shows that
the function f is a P-simple process, that is

f(s,0) = Hy(w) = ho(@)1mo0i(s,0) + D hi(@)ln,zip(5,w),

1<i<n

where each h;(w) is a simple F7,-measurable random variable (approximate
f by sets in P3). Then for any stopping time 7', we clearly have

T
/ HJdX, = Hi(w)dpx(s,w)
0

(0,7]

= Z hi(w) (XT/\Ti+1(w) - XT/\Ti (UJ)) :

1<i<n

Thus we can define an (F;)-adapted process (H - X) on R, x Q by

t
(H-X), = / H,dX,.
0

Now that we've seen where we want to go, let’s go back and look at our
“vector measure” px. At the very least, we’d like to integrate arbitrary pre-
dictable processes, i.e. P-measurable functions f : Ry x 2 — R. Naturally,
we will require the set function px to be o-additive. But what kind of pro-
cess X produces a o-additive function ux? Before we attempt to answer this
question, we jump ahead and develop a little integration theory.

13



Topological matters

Let (£,.A) be a measurable space, F' a Banach space. With a slight abuse
of notation, we will also denote by A the vector space of A-measurable real-
valued functions on =. The A-measurable, bounded real functions form a
subspace, denoted bA, of A. Equipped with the sup-norm

[fllec = sup|f(z)l, f €bA,

TEE

bA becomes a Banach space. This norm topologizes uniform convergence.

The spaces F we are mainly interested in are the cases F = L?(Q, F,P),
where 1 < p < oo. This will allow us to develop a theory of integration
for measures py : (2, A) — LP(Q, F,P) when X is an LP-process, that is,
X, € LP(Q, F,P) for each t.

As we saw previously, the natural, and most general, space to consider
would be £ = L%, F,P), where the topology would be induced by con-
vergence in probability. There are two reasons why we restrict ourselves to
E = LY(Q, F,P) where p > 1.

One is that when p = 0, F is more difficult to handle: it is not normable,
and in fact has trivial dual E' = {0}. The best approach then is to do a
Daniell type (vector) integration theory. What we’ll do instead is to exploit
the duality of our Banach spaces in such a way as to reduce nearly the whole
theory of vector measures to that of real measures.

The other reason is that by a probabilistic procedure called localization,
we cover all LO-integrators as “local” L!-integrators anyway. So we do not
loose much by neglecting the case E = L%(Q, F,P).

So let’s assume from now on that E is Banach:

+x Vector measures

An E-valued measure on (=, .A) is an additive set function yx : A — E such
that whenever (A;) is a sequence of disjoint elements of A, and A = J; A4;,
then

(/L(A) — Z/L(A,)) —0 in F asn — oo.

So p must be o-additive as usual.

14



As with a real measure, we can associate with y its variation |u|, defined
for A € A by

l(4) = sup 3 144

where the supremum is taken over all disjoint partitions (A;) of A such that
A; € A. Note that if E=R, ||| = |- |, we get the usual variation measure
|u|. However, for general E, the variations are usually infinite and much less
useful than in the real case.

To remedy this situation, we introduce the semivariation ||p|| defined for

A€ Aby
Z aipu(A;)

where the supremum is taken over all finite disjoint partitions (A4;) of A with
A; € A and real numbers (q;) with |a;| < 1.

As will be seen a little later, the semivariation gives indications about the
range in F of the set function y. For now, we note that obviously for any

A€ A,

|4l (A) = sup

?

0 < (A < Nlpll(4) < [lwll(Z)-

* Vector integration

Now let E' be the topological dual of E. For a continuous linear functional
x' € E', we will write (2', z) for its value at a point z € E.

When p is an E-valued vector measure, the set functions (z', u), defined
for A € A by
(@', 1) (4) = (', u(A)),
are certainly bounded, real-valued measures, for every 2’ € E'.
We say that an A-measurable f : = — R is p-integrable if it is integrable
with respect to every measure (2, u), ' € E' and if for every A € A, there
exists an element x4 € F such that for all 2/ € F’,

(', 4) =/Afd<$',u>-

For each A, the element x4 is clearly unique when it exists. When f is
p-integrable, we write [ 1 fdp = 4. We also write as usual

[ in= / fd.
15



When f =), a;14, is an A-simple function, it is easy to check that for

all A e A,
/Afd,u = Zai,u(Ai N A).

The vector integral is clearly linear in both the integrand and the measure.
Thus the collection of integrable functions forms a vector space, denoted
LY(p). As usual, if we consider equivalence classes of p-a.e. equal functions,
we call the vector space L'(u). But hereafter, we will indulge in the usual
confusion between £' () and L' (u).

When f € L'(u), it induces a new vector measure f - 1, defined for A € A
by

(7w = [ sau
The natural topology on L!(u) is given by
1A= 17 ll(E)

which makes L!(p) into a complete topological vector space, as will become
clear shortly.

In fact, vector measures again form a vector space, written Meas(Z, A; E)
with topology induced by the semivariations ||u||(Z).

Familiar examples

This definition of vector measure and integral via duality is perhaps not the
most obvious one. But suppose that we had taken the alternative definition
that f be integrable whenever there is a sequence of step functions (f,)
converging p-a.e. to f and such that the sequence of integrals ([, fndy) is
convergent in E for each A € A. Then such an f would also satisfy our
duality definition of integrablility.

Now suppose E = R, so that p is a signed measure. Then E' = R also
and a function f is p-integrable (in the vector sense) if and only if for all

a €R,
a/fdu

so that f is integrable in the usual sense.
Note that the measure p does not take infinite values. This is a restric-
tion in the real-valued case, but then in a general Banach space there is no

< 00,
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“element oco”. Thus we expect our integration theory to be similar to that
of finite, signed, real-valued measures.

When E = C, we can get a larger class of integrable functions by admit-
ting complex-valued functions. However, this relies on being able to multiply
two “vectors” of the space C. When FE' is a general Banach space, there is no
“natural” multiplication of vectors, which means that the natural integrable
functions must be real-valued. We will come back to this problem when we
discuss integration on manifolds.

The range of a vector measure

Semivariations are useful if they turn out to be finite, that is why they are
introduced in the first place. We noted earlier that [|u||(Z) > ||ul|(4) >
|u(A)|, for all A € A. Soif ||u]|(E) < oo, this means that the whole range of
i, the set {u(A) : A € A}, is bounded in E. So p is really a “finite” measure.

Conversely, if ;4 has bounded range in F, then it must have finite total
semivariation: for x € FE, recall that there is 2’ € E' with ||2/|| = 1 and
(', z) = ||z||- So this means

[ull(E) = sup{|{z’, )(E)]|: [|2']| <1}
< sup{2sup [(z', ) (A)] : [|2"]| < 1}
AcA
< 2sup [p(4)] < occ.
AcA
The rest of our development of vector integration will depend on the

boundedness of the range of p. Luckily, any measure with values in a Banach
space has bounded range. This is seen as follows:

Let 7 be the collection of all finite disjoint partitions (A4;) of = with
A; € A together with scalars (a;) such that |a;| < 1. Then for each z' € E,

sup |{z Zaz i) < [, 1) |(A) < oo.

Each element ). a;u(A;) may be considered as an operator on E’, so by
the uniform boundedness principle,

sup | Zaz Dl = llull(Z) < oo

The boundedness of our vector measures means that their integration
theory is closely related to that of finite measures. Here is a first result:

17



Bounded functions are integrable

THEOREM 5. [KK76] Every bounded .A-measurable function f is p-integrable,

and
/A fp|| < flloo - 1l (A).

PROOF: 1If f is a simple function, the inequality is obvious from the
definition of the semivariations of p. In general, take a sequence (fy) of
simple functions such that || fx — f||cc < 1/k. Then

/A fud ~ /A fidy

provided K and [ are sufficiently large. Thus ([, frdy) is a Cauchy sequence
in £ an hence must converge to some element z 4. Since f is moreover clearly
(z', p)-integrable for each 2’ € E’, we see that f € L*(u), and

/A fdpu = lim /A Fedp.
/ fkduH

< liminf | flloo - 2] (4)
[[flloo - 1[I (A)-

< (U/k+1/D) [[ull(A) <e,

Finally, we have

T

IN

lim inf
k

N

VAN

Dominated functions are integrable
THEOREM 6. [KK76] Suppose f and g are A-measurable functions with |f| <
gon Z. If g is p-integrable, then sois f.

PROOF: Define h(t) = f(t)/g(t) whenever g(t) # 0, and h(t) = 0 oth-
erwise. Then by the previous result, h is (g - u)-integrable. But from real
measure theory, f is (z, u)-integrable for every z' € E', since g is. Now if

o= [, hd(g- ), then

(x',ﬂm=/Ahd<x',g-u>=/Ahgd<ﬂc’,u>=/Afd<x’,u>,

and hence f is integrable. O
Note that this result implies that f € L'(u) < |f] € L*(p).
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* The dominated convergence theorem

Finally, we can now easily prove the DCT:

THEOREM 7. Let f, and g be in L' (1) with |f,| < g and f,, — f p-a.e., then

feL'(p) and
lirlln‘/fnd,u:/fd,u.

PROOF: For any 2’ € F',

(e’ [ fudp) = lim [ fudla's = [ s = o', [ g,

Note that the last equality holds only because f is u-integrable, which follows
from the previous result. O

On integrability

It is easy to rederive a lot of results from real measure theory for the vector
integral. However, it is crucial to remember that it is not enough to show
that a function is (2, u)-integrable for every z' € E' for it to be p-integrable.

Indeed, suppose = = N, A = 2V, E = ¢, the space of sequences of real
numbers converging to zero. If p(t) = 1/t and u(A)(t) = (t)14(t) for every
A € A, then u is a vector measure. Now E' = [!, the space of sequences
a' = (z;) with Y, 2; < co. The function f(t) =t is (2, u)-integrable for all
x' € E', with integral

/Afd(x',u) = sz < 00,

€A

but f is not u-integrable, for

/fdu:(l,l,l,...),

the unit sequence which is not an element of c.

19



* The stochastic integral
Let’s now again consider our process X with the additive set function on P,
px(18,T]) = Xr — X5, px([5,0]) = 0.

To apply the theory we just developed, we first consider L!-processes.

If ux extends to a vector measure (with values in L'(Q, Fy,P)) on P,
will say that X is summable. Such processes obviously form a vector space.

If the extension py exists, it must be unique. To see this, suppose 1y is
another extension. Then ux and Jix agree on the algebra Py. Thus for each
x' € E', the bounded signed measures (z', ux) and (', ix) agree on Py. By
the Caratheodory extension theorem, they must agree on P, which means
that pux and rx must also agree on P.

The same argument works also for Py[S,T] and Po)S,T|. But Py[S,T]|
and Py|S, T are not algebras, only rings. So there could be a slight problem
with uniqueness here. But since 7" is assumed to be predictable in these
cases, we have [S,T[= ,[S,T,] and each Py[S,T,] is an algebra. Thus for
any A € P()[S, T[,

(@', ux)(AN[S, To]) = (', mx) (AN [S, T)),

and by dominated convergence,(x', ux)(A) = (z',lix)(A). Thus the exten-
sion py is again unique on P[S, T[ and P]S, T.
Here is the vector version of the Carathéodory extension theorem:

THEOREM 8. [Yor78, DU77] An additive set-function x, defined on an algebra
Ap, with values in a weakly sequentially complete Banach space E, has an
extension to a measure on A = o(Ay) if and only if for every 2’ € E’, the real
function (z', u) : Ay — R is o-additive and bounded. The extension is unique if

it exists.

We will not prove this theorem, though we won’t really be using it either.
Because of the integration theory we developed, if we simply check that
(«', i) are measures on A and ||u||(E) < 0o, we can then integrate bounded
functions, which is what we will be interested in doing most of the time. If
we were to apply the theorem, then checking these same conditions would
show that p is actually a vector measure.

When X is summable, the process

t
(H : X)t = / Hsts = HS(W)d,LLX(S,CU)
0 [0,¢]
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makes sense for any P-measurable (predictable) H which is px-integrable on
every stochastic interval = = [0,¢]. Such an H will be called X -integrable,
and this will be written H € L'(X) = L'(ux).

Each of the random variables (H - X)r, T a stopping time, is almost
surely unique. This comes from the fact that E' = L*°(Q, F,P), the space of
bounded random variables, for if G € F, then 15 = 2’ € E’, and

Elg(H - X)r = (2, Hdux) = Hd(z', ux),
[0,T] [0,T]
so that two random variables which cannot be distinguished by E’ also cannot
be distinguished by P, and conversely.

Note that the process (H - X) is automatically (F;)-adapted. Since for
each t, (H - X); € L'(Q, F;,P), the whole process (H - X) is only defined up
to a modification.

Note also that a sufficient condition for H € L'(X) for all summable X
is that the process H be bounded on every stochastic interval [0, ¢].

The process (H - X) is the probabilistic equivalent of an “indefinite in-
tegral”. We will now see that it always has a modification which is right-
continuous with left limits. This modification is clearly unique up to in-
distinguishability (compare two processes on the rationals). It is called the
stochastic integral.

* Cadlag processes

Suppose X is summable and H € L!(X). Then (H-X) has a right continuous
version, for if a,b € Ry with a < b, then

b
(H-X)y — (H - X)ay = lim HdX = lim / H"dX,
" Jla+1/n,b] m Jo

where H" = H1y,,1/5- By applying the vector DCT, we conclude that
b
(H-X),,—(H-X)a+:/ HdX = (H - X), — (H - X),,

where the equality is on a set of probability 1 (which may depend on b). By
letting b run through Q. , we can conclude that

P((H X)oy = (H-X)) =1 forallaeR,.
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By an entirely similar reasoning, the process (H - X) must have left limits,
though it won’t be left continuous in general (since H" = H Lja,p—1/n) COD-
verges to H1jqp, the vector DCT implies that (H - X)y_1/, — (H - X), must
converge to something. Callit (H - X),— — (H - X),).

If we choose Hi(w) = 1 in the above, we see that X itself must have a
version which is right continuous with left limits.

Note that if the integrator X has left limits, then the process (X; ) is
predictable, and so potentially an integrand. From now on, we will assume
our integrators to be processes with a version which is right continuous with
left-hand limits, called cddlag (the acronym is from the French “continu a
droite avec limites a gauche”, pronounced “kohntynew ah droaht ahvehk limit
ah gohsh”, which is a considerable improvement over the English r.c.l.1.).

On a similar note, a caglad process is one for which the sample paths are
left continuous with right limits (“continu a gauche avec limites a droite”,
“kohntynew ah gohsh ahvehk limit ah droaht”, l.c.r.l.)

The sample paths of cadlag processes have some nice properties. For
example, let f : R — R be a cadlag function. Then f is bounded on compact
intervals. To see this, let K C R be compact. For z € K, both f(z+)
and f(z—) exist and are finite. Thus f is bounded on a small neighborhood
of x. Since K is compact, it can be covered by a finite number of such
neighborhoods, showing that f must be bounded on all of K.

Another useful property is the following: for any ¢ > 0, the function f
has only finitely many jumps of size greater than € on any compact interval.
The proof is in the same spirit as that of the previous property. This also
means that f has only countably many jumps of any size on the whole of R.

The smallest o-algebra which makes all cadlag processes on [0, 0o[ mea-
surable is called the optional o-algebra, written . Since continuous pro-
cesses are cadlag we have P C O. The reverse inclusion however holds only
when all “martingales” (see later, and also [RY90]) with respect to (F;) are
continuous.

Before we consider the question of which cadlag processes are locally
summable, we will look at some simple properties of integrators in general.

* The module associativity property

Recall that if X induces the measure py, then for any f € L'(ux), f - pux
is again a measure. So if K is X-integrable, the process (K - H) is again an
integrator. Now suppose H and K are processes such that HK, K € L'(X)
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and H € L'(K - X). Then
H-(K-X)=(HK)-X

In particular, this is true if both H and K are bounded on each [0,].
The proof is simple: for any G € F;, 1 =2’ € E’. Then

Elg (/Hd (/Kd,ux)> _ (x’,/Hd (/Kdux>)
_ / Ha(', / Kdji)
_ / Hd ( / Kd(x’,,ux))

— / HKd{z', ux)
= (x’,/HKd,uX) =Elg (/HKdux>>,

which shows that H - (K - X); = (HK - X); almost surely.

Changing the stochastic basis

There are many things to say about this very important topic. We just note
two simple results.

(i) Suppose (G;) is a subfiltration of (F;), and that X is (G;)-adapted. If
X is an (F;)-integrator, then it is also a (G;)-integrator. This is obvious, for
we are simply shrinking the predictable o-algebra P[S,T], and thus making
it “easier” for a process to be summable. In particular, this means that the
filtration generated by X is the smallest for which X is an integrator.

(ii) Suppose Q is another probability on (2, F), absolutely continuous
with respect to P and such that the Radon-Nikodym derivative dQ/dP <
K < oo. Then if X is summable under P, it is also summable under Q.
This is very easy to see as follows: for any y' € E' = L*(Q, F,P), and any
A € P[S,T1,

(W, ixda(A) = [y T2 (A = (&', ux)e(A),
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and

= dQ -
Ixlo(® = sup [ 2 4P < Klux () < oo,

ZaiMX(Ai)
where ' = y'dQ/dP € L>(Q2, F,P), and = = [S,T].

* Stability under stopping

Suppose X is an integrator, and let px be the vector measure induced on P.
If T is a stopping time, then for any U, V < T,

px(JU,V]) = Xv — Xy = Xyar — Xuar = pxir(JU, V1))

and of course px([U,0]) = 0 = pxir([U,0]. Thus px and pyr agree on [0, 7],
and also on [0, A T] for all ¢. Hence we have almost surely

(-x)" = [

[0,TA]

t
Hdpx = (LomH - X)) :/ Hdpyw = (H-XT),.
0

The importance of this little result should not be underestimated. It
allows, as we will see next, an extension of the concept of stochastic integral
beyond summable and integrable processes.

x Localization

A localizing sequence is an increasing sequence (77,) of stopping times with
T, T oo a.s. Such sequences are useful to weaken various properties of pro-
cesses.

We say that a process X has property P locally (resp. prelocally) if for
some localizing sequence (7},), X" (resp. X'"»~) has property P for each
n.

Thus X is prelocally summable if X'™~ is summable for each n; H
is locally bounded if H'™ is bounded for each n; H is locally (resp. pre-
locally) X -integrable if H™ (resp. H'»~ is X-integrable). This will be
written H € Ly, (X) (resp. H € L,,.(X)). Note that if X is locally
summable/integrable/bounded, then it is also prelocally summable/integrable /bounded.

24



* Localizing the stochastic integral

The point of the above definitions is that we can define a “(pre)localized”
stochastic integral of (pre)locally integrable processes with respect to (pre)locally
summable processes:

Consider first the case H € L] _(X) where X is summable. There are
T, 1 oo with H = H™» on [0,T5,]. Since H"» € LY(X), (H1ps, - X)s is a.s.
uniquely defined for any S < T,,. Call this (H - X)g, and since T;, 1 0o, this
defines a.s. (H-X)g for any stopping time S. The definition does not depend
on the sequence (T3,), for if (R,) is another localizing sequence, R, AT, 1 oo

and for any S < R, AT,
(Hl[O,Rn] - X)s = (Hl[o,Rn/\Tn] - X)s = (Hl[o,Tn] - X)s.

If X is locally summable with localizing sequence (T},) and H € L. (X"),
define similarly (H - X)g = (X - X|T)g for any S < T,,, and again this a.s.
yields (H - X)s for any stopping time.

Now suppose X is only prelocally summable (resp. H € L;IOC(X ) etc.),
then X agrees with X'T»~ (resp. H = HI™~) on [0,T,[, so that provided
S < T,on{T, >0}, (H-X)g = (H"™-XT")g is uniquely defined. Letting
n — 0o, this a.s. provides (H - X)g for any S < o0.

So we see that in any case, random variables (H - X); exist a.s. for any
t € R,, and define a process, which we again call the stochastic integral.
Henceforth, we’ll abuse notation and write Lj (X), Lj,.(X) for the X-
integrable processes, even if X is only (pre)locally summable.

Clearly this new stochastic integral has (pre)locally the same properties
as the previous integral. In particular, (H-X) is again (pre)locally summable
when X is.

When H is locally bounded, we get a bonus: H € L. (X) for all locally
summable processes X. Furthermore, if H is prelocally bounded, it also is
locally bounded, because it is the limit of continuous processes H", which
are locally bounded if and only if they are prelocally bounded.

Similarly, if H is caglad then it is locally integrable (w.r.t anything). To
prove this, we show it must be locally bounded. Let T;, = inf{t : |H;| > n}.
Then T, 1 oo a.s. since each sample path is bounded on the compact time
interval [0, n], and H'™ is bounded.

Finally, note that any locally summable process is prelocally summable,

and (H - X)g is the same in both cases, when S < oo.
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The stochastic dominated convergence theorem (SDCT)

Now that we have an integral (H - X) for quite general processes H and X,
we would like a specifically stochastic DCT. When Z is a process, recall that
we write Z; = sup,, |Z,| to denote its mazimal process.

THEOREM 9. Let X be prelocally summable and H" — H (a.s.) be a sequence
of processes with |H"| < K for some K € Li (X) (resp. L}, .(X)). Then

loc ploc

H e L] (X) (resp. L}, (X)) and (H" - X) converges to (H - X) uniformly on

loc ploc
compact time intervals in probability (in short: ucp convergence).

PROOF: By (pre)localization, we can assume K € L'(X) and X is
summable. To apply the vector DCT (which requires convergence in (', ix)-
measure for each z')), note that H® — H P-a.s. implies that with probability
1, H" — H (2', ux)-a.e. This follows because whenever B € P and P(w :
(t,w) € B some t) = 0, then P((z', ux)(B) = 0) = 1 as is easily checked on
members of P,. So we can use the vector DCT.

It remains to show convergence in ucp, i.e. for fixed ¢, € and ¢,

P(H"-X—-H-X); >c)<e

for large enough n.
Let (7)) and (S;) be (pre)localizing sequences for X and K respectively.
Then
P((H"-X—-H-X); >c¢)
< P(H" X-—H-X);>c[Tpxy ANS; >t) +P(Tp ANS; < t)
= ]P(Zt* > C) + P(Tk A Sj < t),
where Z = (H™ — H)!Si— - XITe=) on [0, S; A Ty
Let R = inf{s : [Z;| > ¢}. Then {Zf > ¢} C {R < t}. So cliz:se <
| ZR|1{r<sy, and

cP(Z; >¢) < E[|Zg||R <t P(R < 1)
< |lpzlI(0, 1] x 9)
<

sup [I(HY = Hy)%7 ||oo - | xem-[1([0, 8] x Q).

Thus if n, k, j are large enough,
]P(Z: > C) +P(Tk /\Sj < t) < 6/2+6/2 = €.
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* Finite variation processes are integrators

Let A be a cadlag adapted process with Ay = 0. If the sample paths t +—
Ai(w) are a.s. of bounded variation on every compact interval of R, , we call
A a finite variation (FV) process. For such a process, the expression

/0 aA(w)

makes sense as an w-by-w Lebesgue-Stieltjes integral, for almost every w.
The variation of A,

¢ 0
/ |dAs| = sup Z |At/\(k—|—1)2—" — Agpra-nl,
0 n

k=0

also makes sense a.s.
When A is an FV process, we say that it is an integrable variation (IV)
process if

E/ |dAg| < 0.
0

Our first few integrators are easy to find: any cadlag IV process A is
summable. To see this, just define for any B € P

,uA(B):/ 1p(s,w)dAs(w) (Stieltjes w-by-w).
0

Then we clearly have a.s.

T(w)
1aA(S,T]) = / A, (w) = Ap — Ag,
S(w)

pa([S;0]) = 0.
Also, when (B;) are disjoint predictable sets with B = J; B;, then

k k

li;n]EWA(B)—ZuA(BZ-)\ = li;nE/ (1 — Y 1p,)dA,
i=0 0 i=0
k o0
< 1E11]131|1B—;13i|-/0 |dA|

= 0,
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where the DCT applies, since the functions fy = |15 — Zf:() Lg,| - [ |dA,]
are dominated by fooo |dA|, which is integrable by definition.

Note that this argument works for any B € B(R,) ® F, not just pre-
dictable ones.

Now let A be any FV process. Setting T, = inf{¢ : fot |dAs| > n}, we see
that (7,) is a prelocalizing sequence and AT~ is an IV process for each n.
Thus A is an integrator. Note that if A is a predictable FV process, then it
is even locally summable.

If N is a PP()) its sample paths are a.s. increasing. So it is an FV

process and
t Ny
/ H,N, =Y H,AN, =Y H,,
0 k=1

s<t
where 7, = inf{t : Ny = k} is the time of the k-th jump.

Stochastic integrals reduce to Stieltjes integrals

Although we have used the Lebesgue-Stieltjes integral to show that an FV
process is prelocally summable, we still have an a prior: choice in interpreting

the integral
t
/ H,dA,
0

path-by-path as a Stieltjes integral or as a stochastic integral. That both
interpretations give the same result when H is locally bounded is easily seen
by the SDCT: When H is a simple process, both integrals clearly give the
same result. In the general case, we stop H so that it remains bounded.
Taking simple processes H" — H and using SDCT then shows both integrals
still give a.s. the same result.

Since conversely we know that X must be a.s FV when the stochastic
integral reduces to a Stieltjes integral, this means that any other integrators
we find will have a “new” integration theory.

* Martingales

Another important class of processes (not only) in stochastic integration are
martingales. We say that an adapted process M is a martingale with respect
to the filtration (F;) and probability measure PP if the following two conditions
are satisfied:
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1. Forallt, X, € L'(Q, F,P),
2. For all s < t, B[ X;|F,] = X;.

If we replace L'(Q, F,P) with L?(Q, F,P) in the first condition, we end
up with LP-martingales. The second condition represents the behaviour of
the martingale: since F, contains the complete past history of the process X
up to time s, this condition means that the best possible predictions of the
future evolution of the process involve no discernible trend whatsoever. The
process consists of purely random fluctuations (though we must be careful:
the fluctuation patterns are often quite different from what we intuitively
expect. See Feller’s famous chapter on cointossing in [Fel68]). Notice however
that the martingale property is not intrinsic to the process. It depends
crucially on the filtration and the probability measure. Changing them (“the
observer”) may result in the loss of the property.

Simple examples of martingales in discrete time Z are sequences of (in-
tegrable) independent random variables (X, )nez., and also their partial sums
Sn = >_; X;. The filtration (F,,) is then defined by F,, = o(Xy, X;, 1,---, Xp),
the smallest o-algebra making the X; measurable.

In continuous time, the most important example for us is the BM?*(R)
on (Q,F, (F),P):

]E[Btu:s} = E[Bt - BS|-¢5] + ]E[BS|-¢8]
= ]E(Bt — Bs) + B,
= B,.

If N isa PP()), the process (IV; — At) is a martingale, called the Poisson
martingale on (Q, F, (F), P):

E[N; — At|Fs] = E[N; — Ng|Fs| + E[N;|Fs] — At
= N, —Js.

Another important example is as follows: let X be a fixed (integrable)
random variable. Then successive predictions X; = E[X|%,] form a martin-
gale ()?t) with respect to (F;). In fact, on any bounded interval [s,t], any
martingale simply predicts its final value X; by definition. What if t = co?
Then there is the martingale convergence theorem:
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THEOREM 10. [RY90] Let (M;) be a cadlag LP-martingale. Then:

o for p =1, My - My, as. if ||[M||; = sup, ||M:||1 < co. Convergence is
also in L' if and only if M is uniformly integrable, i.e.

lim SupE1{|Mt|>n}‘Mt| =0.

n—oo ¢

e for p > 1, My — My both a.s. and in L? if || M||, = sup, || M|, < oo.
e when M; — M, in L?, then M; = E[M,|F].

(When ||M]||, < oo, we say that the process is LP-bounded.)
Furthermore, there are Doob’s inequalities:

THEOREM 11. [RY90] Let M be a cadlag LP-martingale, and let M} = sup,; | M|
be its maximal process. Then

o forp > 1, P(M% > c) < (cH|M]|p)"

o forp>1,

M|, < g[|M

» Where p™t+ ¢t =1
Last but not least, martingales obey the optional stopping theorem:

THEOREM 12. [RY90] Let M be a cadlag martingale and S, T two stopping
times with S < T'. Suppose that 7" is bounded. Then

Mg = E[MT|.7:5].
If also M; — M, in L', then for any T,
Mg = ]E[Mﬂfg] = ]E[Moo|.7'—5].

In particular, M is again a martingale.

* Super/submartingales

But martingales don’t cover all the types of process we are interested in. As
a first generalization, consider a process which has an upward trend. Such a
process would be increasing on average. We call an adapted process (M;) an
L?-submartingale if:

1. M, € I*(Q, F,P),
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2. E[M,|F,] > M, for all t > s.

Of course a supermartingale is a process with a downward trend, i.e. M
is a supermartinagle if (—M) is a submartingale (terminology comes from
potential theory). Martingales are both super- and submartingales.

Exactly the same inequalities and stopping/convergence theorems hold
as for martingales.

Finally, the following theorem explains why we always assume standard
filtrations:

THEOREM 13. [RY90] If M is a submartingale on (2, F, (F;), P), where (2, F, (F), P)
satisfies the usual conditions, then M has a cadlag version if ¢ — [EM; is a right-
continuous function.

In particular, if M is a martingale, the map ¢ — EM, is constant, so M
always has a cadlag modification.

A submartingale representation

A (u.i.) martingale M is generated by the r.v. M, that is, M; = E[My |F].
Is a similar result true for submartingales? Clearly, one r.v. is not enough,
but is there an increasing process which generates it? The following theorem
partially answers this question:

THEOREM 14. [Kry90] Let M be a cadlag, L'-bounded, positive submartin-
gale. Then there exists an increasing process N such that a.s. for all ¢,

PROOF: Let Q = {qo, q1, ¢, ...} be a countable dense subset of R, with
qo = 0, ¢ = 0o, and such that it contains all points of discontinuity of the
increasing function t — EM;.

For each n, let @, = {r1 < ro < --- < r,} consist of the first n
points of @, in increasing order. Since M is a submartingale, functions
fi€ Foyyeony fumr € Fr | exist such that 0 < f; <1 and

Mri = fiE[MTi+1 ‘fh]

n—1

Define an increasing process Z" by

gn _ fifiv1- - famr it € [ri,ripa],
¢ 1 if t = o0.
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By recursively iterating the defining formula for f;, we see that
M, =E[MyZ}|F,] forall g€ Q.

Since now the unit ball of the Hilbert space L*(Q, F, My (w)P(dw)) is
sequentially compact, there exists a subsequence (n;) such that for all ¢ € @,
Zp*(w) converges to some Z,(w). Then for any B € F,

Elp M, = E1gE[M,, Z|F,] = Elp M, 2™,

and letting k£ — oo shows that M, = E[M., Z,|F,] a.s. for each ¢ € Q). Since
(@ is countable, this is also true for all ¢ outside a common null set.

If we then write G, = inf{Z, : ¢ > t,q € Q}, the process G is clearly an
increasing right-continuous process and

EM; =limEM, = limEM, Z, = EMG;.
qlt qlt
Choosing N; = MG gives the result. O

* A partial Doob-Meyer decomposition

If M is a submartingale, an important problem is to try and compensate it,
that is, to find a nondecreasing process A with Ag = 0 such that N =M — A
is trendless: a martingale. In discrete time, this is easy:

o Let A() =0.
o Write A, — A, =E[M,1|F,| — M, >0.
e Define N by M,, = N, + A,, and check that it is a martingale.

This is termed the Doob decomposition of a discrete-time submartingale.
It is unique under the condition A, € F,,_1.

In continuous time however, things are not quite so easy. The following
result is a partial version of an important theorem: the Doob-Meyer decom-
position of a submartingale.

THEOREM 15. [Kry90] Let M be a cadlag, L'-bounded, positive submartin-
gale. Then there exists a decomposition

Mt:M0+Nt+At
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such that A is nondecreasing with Ag = 0, and N is a martingale with Ny = 0.
Moreover, A is natural: it satisfies

t
EXtAt == E/ Xs,dAs
0

for any bounded martingale X.

PROOF: By considering (M — M) if necessary, we can assume that My =
0. Let @ be as in the previous theorem. For any bounded random variable
X, E[X|F:] defines a martingale. We will write E[X|F;_] = limy E[X, F,]
over ¢ € (). Now let’s prove the theorem.

There exists a right-continuous increasing process Z such that M; =
E[Z,|F:]. For each ¢ € Q and B € F, define

1(B) = E /O E[15|7, 17,

Since E[15|F,-] <1 and EZ, = EM,, < oo, the DCT shows that y, is a
bounded measure, absolutely continuous with respect to P, on (£2, F). Define

dp .
A, = d—IP?’ A = ég{Aq.
Then A is a.s. an increasing right-continuous process and A; = du;/dP a.s.
for each and every ¢. It remains to check that (M — A) is a martingale.

For any B € F;, since E[1g|F,_| = 15 whenever r > s, we have
_ d/'l’t d,us
Ely(4, — A,) = / (St g

= m(B) — ps(B)
¢
- E / E[15|F, ]dZ,
= ElB(Zt - Zs) = ElB(Mt - Ms)a
This means E[M; — A;|F;] = E[M; — As|Fs]. The result will follow if we show
that A, is F,-measurable.
For any B € F, since E[E[15|F]|F,-] = E[1p|F,—] whenever r <,
t
EipA, = y(B) = E / E[E[1 3| F)| 7, |42,
0
E(E[15|F:]A)
E(E[15|FE[A|F])
ElgE[A;|F].
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Now let’s check the “naturalness” of A. If X is any bounded martingale, we
can use to dominated convergence theorem to get

t
EX: A, = ]E/ Xs_dZ
0

= llm ZE‘Xti_(ZtH-l - th)
A

|A|]—0

= lim Z ]EXti*(AtH—l — Atl)

|A|]—0

A
t
- ]E/ X, dA,.
0

O
Clearly, this result extends in an obvious way to bounded super/submartingales.
Just out of interest, here is the full Doob-Meyer decomposition. We will
not make use of it.

THEOREM 16. [Mét82] Let M be a cadlag submartingale. Then there exists a
unique predictable increasing process A and local martingale N with Ny = Ay =
0 such that M, = My + N, + A,

* Square integrable martingales are integrators

Let M be a cadlag L?-bounded martingale. The typical element of P can
clearly be written

R =[Sy, 0)U]S1, TH] U - - - U]Sy, Th),

where 0 < S5 < 51 <T1 <85 <--- <85, <T, Ifi>j wefind by the
optional stopping theorem (M is uniformly integrable)

(This means that for any A, B € P, with ANB = 0, Epps (A)- uar(B) = 0.
The set function pys is called orthogonally scattered). We can now use the
above to get

Elum (R)]* = ]EIZ(MT,-—Msi)\2
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= ZE(MTz - ]\451')2
= ) E(M7 —2Mg,Ms, + MY,)

= Y E(M7, — M)
< E(Mg, — Mg,) < 2EM,.

This computation shows that ||u||(Ry x Q) < co. Furthermore, we also
see that E|uy (dt, dw)|* = Buype (dt, dw) = v(dt,dw) on Py. Thus (x', upr)
is o-additive there if pj; is if and only if v is. Now M? is a cadlag L!-
bounded, positive submartingale (apply Jensen’s inequality to the convex
function z — z?) and hence it can be written M? = N + A, where N is a
martingale with Ny = 0 and A is increasing. So on P|0, 7], where T < oo is
any stopping time, the measure v(dt, dw) = Eu, (dt, dw) is o-additive since A
is an F'V process. This shows that an L?-bounded martingale is an integrator.
The real measure Eu 4 (dt, dw) on P[0, T] is called a control measure for py;.

As opposed to the case of FV processes, the fact that we worked only
with predictable sets was crucial in the above.

x BM°(R) is an integrator

As a consequence, we can show that if B is a BM°(R), then it is an integrator:
by continuity of the sample paths, the stopping times 7,, = inf{¢ : | B; — z| >
n} are a.s. increasing to infinity and B/" is a bounded and hence a square
integrable martingale for each n (this argument works for any continuous
martingale). In fact, putting z = 0 for simplicity, the decomposition B? =
N + A is given explicitely by A; = ¢ and N; = B? — t. Also, the control
measure is given explicitely by

Eup: (dt, dw) = m ® P(dt, dw)

where m is Lebesgue measure.

(Super/Sub)Martingales are integrators
We start with the following result:
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THEOREM 17. [Bic81] A bounded, positive supermartingale M which vanishes
after a stopping time 7" is an integrator.

PROOF: The conditions on M are sufficient for the existence of a de-
composition M = N + A, where N is a martingale, and A is decreasing with
Ay = 0 (so that Ny = M;). Let K < oo be a bound for M. The theorem
will follow if we show that IV is L?-bounded. But since M; = 0 for t > T, we
have by the naturalness of A,

t
EN? A2 — 2RA? _E / Ay + Ay_dA,
0

t

< —9E / M,dA,
0

< —2KEA,,

and —2KEA, = 2KEN, = 2KEN, = 2KEN, = 2KEM, < 2K?. So the
increasing function ¢ — EN? is eventually bounded, and the result follows.
O

The above result allows a large extension of the possible integrators as
we now demonstrate.

Let M be a super/sub/martingale. To show it is (pre)locally summable,
it suffices to show that submartingales are integrators, for if M is a super-
martingale, recall that (—M) is a submartingale, and if M is a martingale,
it is automatically a submartingale.

So let M be a submartingale. Since M = M+ — M~, Jensen’s inequality
applied to the convex functions x — z* =2z VvV 0 and z — 2~ = —(z A 0)
shows that M are positive submartingales. So we can assume M > 0.

Now let T,, = inf{t : M; > n} An. Then T, is a finite stopping time and
T, 1 oo as n increases. Moreover,

M = (Mo, + nlig, 000) + (Rl + Mz, 1z, o0)-

The first process is a positive, bounded submartingale and hence an integra-
tor, whereas the second process is constant except for a single jump at time
T,,, and hence is an IV process.

The Poisson martingale is an integrator

If Nis a PP()\), then M; = Ny — At is a (discontinuous) martingale, and
hence an integrator. In fact, since the paths of N are increasing, the process
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M is actually an FV process. N is also a positive (unbounded however)
submartingale and has a decomposition N; = M; + At. Its control measure
acts on predictable sets by

pr(]s,t] X F) =Elp(N; — Ng) = ElpA(t — s) = Aim Q@ P(]s, t] x F).

Thus py = Am @ P on P.
However, if 7y = inf{¢ : Ny = 1} is the time of the first jump, we have

NM(N = 0) = MM([OaTlD = 0’

whereas

Am@P(N = 0) = Am@P([0, 71[) = )\/ / Lon((s, w)dsdP(w) = AEr = 1.
aJr,

This means that the set {N = 0} is not predictable, i.e. the PP()) is not a
predictable process.

Local martingales are integrators

A local martingale is a process M such that M ™ is a martingale for some
localizing sequence (7},). Such processes need not be martingales, although
any martingale is a local martingale, localized by the stopping times 7}, = n.
Note that by choosing (T}, A n) instead, we can always assume M7 is uni-
formly integrable. By the previous results, local martingales are integrators.
Moreover, all the integrators we have found so far can clearly be decomposed
into a (nonunique) sum of a local martingale and an FV process.

When is a local martingale actually a martingale? Here is a simple suffi-
cient condition:

THEOREM 18. [Pro92] Let M be a local martingale. If EM;} < oo for every
t € Ry, then M is a martingale. If also EM} < oo, then M is a uniformly
integrable martingale.

PROOF: Let (7}) be a localizing sequence such that M 7 is a uniformly
integrable martingale. When s < t, E[Miar, |Fs] = Msar,. Letting n — oo
and using the ordinary DCT, this means E[M;|F;] = M,. If furthermore
EMZ < oo, then since |M;| < MZ%, the DCT also shows that M; — M, in
L', which implies M is uniformly integrable. U
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Quasimartingales are integrators

Let X be cadlag and (F;)-adapted. The process X is called a quasimartingale
if the following holds: for any finite partition A of [0, ],

Y E|E[X,,,,|F] - Xy| < K(t) < K(c0) < 0.
A

Such processes are in some sense the probabilistic version of a function of
bounded variation.

First note that any submartingale (and hence supermartingale) is trivially
a quasimartingale, because E[X;, , |F] > X; means we can take out the
absolute value signs, so that

ZE (E[Xti+1 |*7:t@] - Xti) =EX; — EX, < oc0.
A

It is also easy to see that quasimartingales form a vector space.

Just as real functions of bounded variation may be written as a difference
of two increasing functions, we have the following theorem in the stochastic
case:

THEOREM 19. [Pro92] Any quasimartingale is the difference of two submartin-
gales.

PROOF: Let A = {g =1 < --- < t, = oo} be a finite subdivision of

[q, 0], where ¢ > 0 is rational. Define the random variables

Y = E[Z E[Xtiﬂ _Xti‘f.ti]+|fq]
A

Z; = E) EXy, — Xu|F] |7
A

Then if A C A’, we have Y;;A < YZIA', ZqA < ZqA'. To see this, consider what
happens when A’ = A U {t}, where t; <t < t;41:

E[Xti+1 - Xti|‘7ti]:t S ]E[]E[Xti+1 - Xt|~7:t]|'7:ti]i +]E[Xt - Xti|~7:t¢]i
< EE[X,, — X| AR+ EX - Xy R

by Jensen’s inequality applied to x — V0 =27 and z — —(z A0) = ™.
Taking conditional expectations with respect to F, then yields that Y;IA <
YqA' and Z < ZqA'.
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Now the collection of all partitions A = {g =, < --+ < t, = oo} of
[q,00] forms a directed partially ordered set under inclusion. Since EY,* <
K (00) < 00, we may take limits in L'(2, F,P) along the net A — Y2, Z2
and set

Y,=lmYS, Z,=lmZz;.

We get right-continuous processes Y and Z by

Y; =limY, Zy = lim Z,,.

PTG TR
Then both processes are right-continuous submartingales, and because for
all A, the equation Y2 — Z» = E[Y , E[X,,,, — Xy, |F]|Fg] = X, holds, we
also see that X =Y — Z. O

* Semimartingales

We have now seen two quite different types of processes which can be used
as integrators: FV processes, for which the integration theory reduces to
Lebesgue-Stieltjes integration, and martingale-type processes, for which the
integration theory is “new”. Are there any more? The following theorem
says no.

THEOREM 20. [Yor78, Kus77] An adapted, cadlag process X is locally (resp.
prelocally) summable if and only if it can be written X = M + A where M is a
local martingale and A is locally an IV process (resp. an FV process).

PROOF: Since we’ve already seen that any process with such a decom-
position is locally summable, we need only show the converse. But this is
easy, for if X is summable, then as A ranges over all finite partitions of [0, ],
we let

SZ(A) = sgn (]E[Xti+1 - th|~¢tz]) € th

so that

SupZElE[Xti+1 - thlf't'z” < supE Zsi(A)(XtHl - th)
A A A A
< sl (0,1 % ©) < oo.

Thus any summable process is a quasimartingale, hence a difference of sub-
martingales, hence decomposable. For the general case, we conclude by lo-
calization. O
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Thus we have a complete (up to modifications) characterization of the
processes we may use as integrators. They are called, not so surprisingly,
semimartingales. What is much more surprising is the following theorem:

THEOREM 21. [Bic81, Mey79, Del80] An adapted, cadlag process X induces a
vector measure px on P with values in L°(Q, F, P) (topologized by convergence
in probability), if and only if it is a semimartingale.

So we see that there really aren’t any other integrators, even if we weaken
considerably the requirements. Rather than prove this result, which is ad-
mirably done in the cited references, let’s look next at some of the marvellous
properties of stochastic integrals.

* Stability under semimartingale decomposition

From Lebesgue-Stieltjes integration theory, we know that if we write

Gt) = /0 h(s)dF(s),

for some function F of bounded variation and h € L!(F), then the function G
is again of bounded variation. In other words, the class of Lebesgue-Stieltjes
integrators is stable under integration. Since the stochastic integral of an
FV process may be evaluated path-by-path, we see that FV processes are
stable under stochastic integration also. Is a similar result true also for local
martingales? The next theorem is a partial yes:

THEOREM 22. If M is a (local) martingale, H a (locally) bounded process,
then the process (H - M) is again a (local) martingale.

PROOF: By localization, we can assume that H is bounded and M is a
martingale. If H is a simple Py-process, so that

(H-M), = Z h; (MTiJrl/\t - MTi/\t)

for some h; € R, then (H - M) is easily seen to be a martingale if M is (the

T; At are finite stopping times, so the optional stopping theorem applies).
For the general case, approximate H by bounded simple Py-measurable

functions (H"), in such a way that (H" - M) — (H - M) in ucp. Pick a
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subsequence (ny) such that (H™ - M) converges to (H - M) a.s. uniformly on
every [0,¢]. Then for s <1,

E[(H - M),| 7] = Ellim (2™ - M),|F,] = lim(H™ - M), = (H - M),

where the uniform convergence justifies interchanging limits with expecta-
tion.
Now a martingale is a local martingale. Thus we have shown the theorem.

]
* Riemann approximations
An adapted subdivision is a finite sequence 7 = (7},) of stopping times
satisfying 0 = Ty, < T7 < --- < Ty < oo. We say that a sequence

(Tn = (Thm)) of adapted subdivisions is a Riemann sequence provided that
sup,, [Tnms1) At — Tum At| = 0 for all t € Ry, and lim, sup,, T = o0.

THEOREM 23. [JS87] Let X be a semimartingale, H a caglad process, (7, =

(Tm)) a Riemann sequence. Then the approximations

To(H - X)) = Z Hy,,, (XTn(m+1)/\t — X1,mnt)

converge to (H_ - X) in ucp.

PROOF: The processes H™, defined by

Tn —
H - : : HTnm 1]Tnm ;Tn(m+1)]’
m

converge to H_ as n — oo. Since H is caglad its maximal process H;} =
sup,<; | H| is in L, (X) and by SDCT, H™ - X = 7,(H - X) — H_- X in

ucp. ]

* The quadratic covariation process

Since martingales have paths of unbounded variation (such as BM°(R)), do
standard results such as integration by parts, the fundamental theorem of
calculus still hold? Here, the answer is no, and finding out what replaces
these is truly the most beautiful part of stochastic integration.
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Let X and Y be semimartingales. Consider the expression
¢ t
X, Y], = X,Y; — XoYp — / Y,_dX, - / X,_dY,.
0 0

Here X;_, Y,  are left-continuous locally bounded processes, so the above
expression makes sense.

The process [X, Y| measures the degree to which the classical formula
of integration by parts applies to the stochastic calculus of two given semi-
martingales. It is called the quadratic covariation of X and Y, or simply the
square bracket.

The bracket is clearly bilinear, symmetric, has [X, Y]y = 0, and obeys the
following convenient polarization formula:

[X,V] = %([X+Y,X+Y]—[X,X]—[Y,Y]>.

Why is it called the C{uadratic covariation? Apply a Riemann approxi-
mation: Let (7, = (Thm)"")) be a Riemann sequence and define

o (XY)r = XoYo + Z(XTn(m+1)AtYTn(m+1)/\t — X1 ntY Tamat) = (X)),

Then

Tn[X, Y]t = Tn(XY)t - XO}/O + Tn(X_ - Y)t - Tn(Y_ - X)t
== Z(XTn(m+l)/\t - XTnm/\t)(YTn(m+1)/\t - YTnm/\t))

m

and as n — oo, these partial sums converge to [ X, Y] in ucp.

How important is the bracket really? When X and Y are FV processes,
so that the classical integration by parts applies for almost each w, we expect
the equation [X, Y], = >, AX;AY;. This doesn’t really warrant the fancy
bracket notation. But suppose X =Y = B is a BM°(R). Then AB = 0,

but we’ve seen earlier that

[B, B]t = li,lln Z(Bti+1/\t - Bti/\t)Q =t,

n

which is definitely not zero! Thus [X, Y] is really quite an exciting process.
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From the approximation, we read off that the bracket [X, X] is always
an increasing process, and by polarization, [X, Y] is always an FV process,
hence a semimartingale.

Note that since all the other terms in the defining equation for [X, Y]
are semimartingales, the process XY must also be one. So the space of
semimartingales forms an algebra.

* Some properties of the bracket

By the Riemann approximation

[X’ Y]t = lim Z(X‘Tn(m+l) _ Xt|Tnm)(}/;|Tn(m+l) — }/;‘Tnm)’

we trivially deduce that for any stopping time 7,
YT = (X Y] = (X, YT = [xT Y.

THEOREM 24. [Pro92, Del80] Let X, Y be semimartingales, H, K be locally
bounded processes. Then

[H-X,K-Y]=(HK)-[X,Y]

PROOF: By polarization, it will be sufficient to show [H - X, X]| = H -
(X, X]. If H =157, then clearly H- X = XT — XI5 and

H-[X,X]=[X,X]"-[X,X]®=[x"-X¥ X]=[H- X, X].

Similarly, if H = 1;g], then H-X = 0,and [H-X,H-X]=0= H-[X, X].
Thus by linearity, the theorem is true for H € P,.

If H is alocally bounded, predictable process, we can assume it is bounded
by localization. Then there are H" € Py with H® - H. So H" - X - H- X
in ucp. So there is a subsequence (ny) such that H™ - X — H - X a.s., and
of course H™ — H. Then

H™ . [X,X] = [H™-X,X]
(H™ - X)X — H*Xg — (H™ - X)_-X — X_(H™ - X),

and note that X_ - (H™ - X) = (X_H™)-X = H™ - (X_ - X). Letting
k — oo and applying SDCT yields the theorem. O
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The bracket and martingales

The quadratic variation yields a very useful sufficient condition for a local
martingale to be a true martingale.

THEOREM 25. [Pro92] Let M be a cadlag local martingale. If E[M, M]; < co
for all ¢, then M is an L?-martingale. Furthermore, EM? = E[M, M],.

Recall that we need to show EM; < oo for all £. Define an increasing
sequence of stopping times T,, = inf{¢ : |M;| > n} An 1 oo. Then

(M‘T”)* <n+|AMr, | <n+ (M, M]n)l/2 < 00,

where the last term is in L?(2, F,P). So M/ is an L?-bounded martingale.
So it is summable and further (M T - MI™) is a martingale with zero mean.
S0

E(M/[™)? = 2B(MT . MT), + E[M T, MIT+], = E[M, M]}™.

But by Doob’s inequality,
IEJ(Mt*/\Tn)2 < AR(Myar, )? = AB[M, Miar, < 4E[M, M];.
So by the monotone convergence theorem, we get as n — oo
E(M;)* < 4E[M, M]; < oo,

and we have shown that M is an L2-martingale. O

+x Discontinuities

How do we compute the discontinuities of (H - X)? Assume H is locally
bounded, then here’s the answer:

A(H - X) = HAX.

This is easy to prove: It is clearly true if H is simple predictable. In the
general case, apply localization and find a sequence (H*) of bounded simple
processes converging to X; SDCT does the rest.

Another very useful result is the following: for any two semimartingales,

A[X,Y] = AXAY.
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This is easily seen as follows: by polarization, we can assume Y = X. Then

AlX,X] = AX?) —A(X2) —2X_AX
= X°-X2-2X (X-X))
(X —X_)*=(AX)%

The above also yields the following decomposition of the bracket into its
continuous and discrete parts:

(X, Y] =[X,Y]"+ ) AX,AY,.

s<-
Observe how the above implies that [X, Y] is continuous provided one of

XY is.

When X is a semimartingale and Y is an FV process

Here is a theorem which illustrates the use of random Riemann sequences.
THEOREM 26. [JS87] Let X be a semimartingale and Y an FV process. Then
(X, Y] =AX Y.

PROOF: We define a Riemann sequence by T, = 0, and
Toimy1) = inf{t > T+ | Xy — X, | > 1/0} A (T + 1/1).

This means that | X, — Xy, .| <1/n on {Thm < 5 < Thmt1)}. Then

1
‘XTn — XTnm‘ S E + |AXTn on {|AXTn | S 2/77,},

(m+1) (m+1) | < n (m+1)

so that the FV process A" = (AX1{ax|>2/m}) - Y satisfies
n 3 3 [
T ([X,Y])e — A7 < - Zm: YinT sy = YinTm | < ), |dY5],

since Y is an FV process. Letting n — oo shows that A} — (AX -Y),
on the one hand, and A} — 7,,([X,Y]) on the other. Hence the theorem is
proved. O
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In particular, if both X and Y are F'V processes, we get back the classical
formula

[X,Y] =) AXAY.

s<-

As an application, suppose N isa PP()\). The process is constant between
jumps, and the jumps have size 1 and are always positive. So N; =" __, AN

and we get
[N,N]=) (AN,)>=) AN,=N
s<-

s<-
The Kunita-Watanabe inequality
If we write [X,Y]. = [X,Y]; — [X, Y], then it turns out that
1, VTS| < (X, XT0) V2 - [, YI) /2.

To see this, note that for each s, ¢, and A, we have outside a null set
(which may depend on s, t, \)

0 < [X+AY, X+ Y]
= N[V, Y], 4+ 200X, Y], + [X, X,
Fixing rational s and ¢, this quadratic equation must hold for all A by continu-
ity, which means its discriminant is nonnegative. This gives the required in-
equality for all rational s, ¢ outside a common null set. Using right-continuity

of the bracket, it must hold for all real s, ¢t outside a common null set.
This may now be generalized to the Kunita- Watanabe inequality:

THEOREM 27. [CW83] Let X and Y be two semimartingales, and both H and
K be two B(R,) ® F,,-measurable processes. Then a.s.

[ e < ([ aza.x,) " ([ war Y]s)w

PROOF: If H and K are Py-simple, then they can be simultaneously
written as H = holjsy o0 + > _; hilys;n], and K = kolis,,00+ >, kilys; ), Where
the h;, k; € R. Then for each w outside some nullset,

/|HK||d[XY < 3 Ikl [ VI )
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i(w i(w 2
< D Ihikal (1X XI5 @), YIEE) @)
A

1/2
< (Zh?[x,XJ?;iE:j%(w)) (;kf[wﬁi&(w))

1/2

= ([ m@dx x.©) " ([ K@ire)

For general H and K, approximate for almost each w the real functions
s — |Hs(w)| and s — |K (w)| by increasing sequences of simple functions
and apply the monotone convergence theorem. O

Of course, applying Hoélder’s inequality yields
t 1/2
H ([ wzavv)
0
P

( /0 "X, X]s) 1/2

where p~1+¢ ! = 1. This yields an especially nice formula when p = ¢ = 1/2.

As a simple application of this inequality, we immediately see that if
[X,X] =0or[Y,Y] =0, then always [X,Y] = 0. In particular, if either X
of Y is a continuous FV process, then [X,Y] = 0.

t
E [ HK||dX, Y], <
0

7

q

* % Ito’s formula

We now come to the fundamental reason for studying stochastic integrals:
Ito’s formula. It is the stochastic analogue of the fundamental theorem of
calculus.

THEOREM 28. [JS87] Let X be a semimartingale and f € C*(R,R). Then
f(X) is again a semimartingale and

FX) = F(Xo) + F/(X2) - X+ S f/(X0) - [X, X)+ 37 F(X,),

where

F(Xy) = F(X,) = F(Xso) = f1(Xs)AX,

PROOF: (i) We first show the result when f is a polynomial. Since
products of semimartingales are semimartingales, f(X) is a again a semi-
martingale.
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When f is constant, the result is trivial. Now assume g satisfies Itd’s
formula and let f(z) = zg(x). Since

f(X) = Xg(X) = Xog(Xo) + X_ - g(X) + g(X_) - X +[X, g(X)],

and noting that the last two terms in It6’s formula are FV processes, a little
bracket computation yields

(X, 9(X)] = ¢'(X)-[X,X]°+ D AX, (9(X,) — g(X,)),

X_g(X) = X_f/(X0)- X+ 3X_"(X)) - [X,XJ+ 3 X, g(X.).

2
s<-

FX) = F(Xo) + (Xog/(X0) +9(X0) - X+ 3 (260X + X_"(X)) - [X, X"

+ Z{Xs_ﬁ(Xs) + AX; (9(X5) - g(Xs—))}

= F(X0)+ F(X) X 4 (X)X, X

35 - rxo) - Fxo)ax, ),

and the result is true for polynomials.

(ii) Observe that, in general, It6’s formula is stable under stopping. By
the localizing sequence T,, = inf{t : |X;| > n}, we can assume that X takes
its values in the compact set K = {z : |z| < n}, provided we work on the
stochastic interval [0, 7,[. The Weierstrass approximation theorem then tells
us that there are polynomials g, which converge (as well as their first and
second derivatives) uniformly to f (and its first and second derivative) on
K. The g; satisfy It6’s formula. Now let £ — oco. It remains to show that
we can take the various limits under the sums/integrals.

Fix t. The case gx(X;) — f(X;) as k — oo is clear. Further, both g, (X_)
and ¢”(X ) are bounded when X is in K, so by SDCT,

gr(X2)- X = f(X2)- X

and
gk (X)) - [X, X]° — f"(X ) - [X, X]".
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_ Finally, if we define f(z,y) = f(z) — f(y) = f'(¥)(z —y) (so f(X) =
f(Xs, X5-)), then whenever |z|, |y| < n,

|f(z,y)| < Clz —y|?,
and
Gk (z,y)| < Clz —yl?,

for some constant C.

Hence . [f(X;, X;-)| < oo and
ZEk(XsaXS—) — Zf(XSaXS—)a
s<t s<t

by the ordinary DCT. O
When the semimartingale X is continuous, the formula is often written
in “differential form”:

df(Xt) == fI(Xt_)dXt + %f”(Xt_)d[X, X]t

Ito’s original formula dealt with the BM°(R):

t 1 t
1By = 180 = [ rByis.+5 [ s
Extensions of Itd’s formula

There is a straightforward multidimensional extension of It6’s formula which
is proved in the same way:

THEOREM 29. [JS87] Let X = (X',..., X?) be an d-dimensional semimartin-
gale, and f € C?(R%,R). Then f(X) is a semimartingale and we have:

FOX) = F(X0)+ Y2 Df(X) - X4 5 3 Dy (X) - (X, X7+ 32 F(x,),
i<d i,j<d s<
where

FX)) = F(X0) = f(Xoo) = Y Dif (X,-)AX]

i<d
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The extension to complex functions is now trivial. Say that Z = X + Y
is a complex semimartingale if X and Y are real semimartingales. If f is a
complex-valued function, we can extend our stochastic calculus in the obvious
way by treating real and imaginary parts separately (processes such as [Z, W]
then become C-linear).

Recall that we often write 2 = 1(2 — ia%) and 2 =1(2 + ia%). Then
any function f : C — C, differentiable as a function of both variables x and v,

and satisfying f /0z = 0 is holomorphic, in which case we write f' = df/0z.

THEOREM 30. Let f: C — C be twice continuously differentiable (as a func-
tion of two real variables), and let Z be a continuous complex semimartingale.
Then f(Z) is again a complex semimartingale and

12) = f+ 2y 2+ %2 74 0 L 2) 12,2
10%f — = Of _
Sos( ) 2.7+ 3L (2)- 12,7,

PROOF: Simply switch from (z,y) coordinates to (2, Z) coordinates. [J
In particular, if f is holomorphic, the above reduces to

1(2) = 1(Z0) + £(2) - 2+ 31"(2) -2, 2]

Discrete time

Just out of interest, what do all the things we discussed look like in discrete
time? If time is indexed by Z,, processes are just sequences of r.v.’s (X,).
Filtrations are simply increasing sequences (F,) of o-algebras, for which right
continuity has no meaning, though Fj is still assumed to be complete. A map
T : Q — Z, is a stopping time provided {T = n} € F, for each n. Similarly,
Fr={A:An{T =n} e F,}.

Although the notion of cadlag process has no meaning, we can associate
to each X the process X_ given by

XO— = X07 Xn— = n—1,

so that

a0



Other notions such as martingales and their properties are valid without
change except the obvious discretization. Note that all discrete-time adapted
processes are in fact F'V processes.

The predictable o algebras P|0,t] are the algebras generated by all pro-
cesses X such that X, is Fo-measurable and X, is F,,_;-measurable for each
1 < n < t. Every process is naturally summable.

Thus we see that a process X is a semimartingale if and only if it is
adapted to the filtration (F,).

The stochastic integral (H - X) is defined by

(H-X), = Z Hy(X, — Xp-1) = ZHPAXP'

1<p<n p<n

Note that when X is a martingale, this process is commonly known as
the martingale transform.
The quadratic covariation is naturally defined as

(X, Y], = Z (Xp = Xp-1) (Y, = Y1) = Z AXpAYy,

1<p<n p<n

and finally, since for any process X¢ = 0, It6’s formula reduces to the trivial
identity

f(Xn) = f(Xo)+ Z ZDif(Xp—l)(X; - X;—1)

1<p<n i<d

+ Z (f(Xp) — f(Xp1) — ZDif(Xp_l)(X; — X;_l)) )

1<p<n 1<d

Note that the discrete-time case actually can be imbedded into the continuous-
time setup: Suppose (2, F, (F,),P) is our discrete-time filtered space. Set
F; = F, whenever t € [n,n+1[. Then (F}) satisfies the usual conditions and
(Q, F,(F]),P) is a continuous-time filtered space. With each process (X,),
associate (X/), defined by X = X,, whenever ¢ € [n,n+ 1[. Then X is (F,)-
adapted if and only if X' is (F])-adapted, and X' is clearly right-continuous.

Deterministic processes and the stochastic integral

To end this chapter, here is an interesting question: does the stochastic
integral yield more integrators in the deterministic case than the Lebesgue-
Stieltjes integral? Unfortunately, the answer is no. Here’s the theorem:
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THEOREM 31. [JS87] Let f : Ry — R. The process X;(w) = f(t) is a
semimartingale if and only if f is cadlag and has finite variation on every compact
interval.

PROOF: If X is an F'V process, we’ve seen it is a semimartingale. Con-
versely, let X = f(0) + M + A be a semimartingale (hence cadlag), (7;,) a
localizing sequence such that M T is a uniformly integrable martingale with
My = 0, and A" is an IV process. Let also F},(dx) be the distribution of
T,. Then

Xelyr, >ty = Xear, — X1, LT <t

and upon taking expectations, we get
fOP(T, >t) = f(0)+EM™ +EA' - EE[Xy, |T,)]
= fO)+EAT — | f(s)dFy(s).
]

(0.t

All terms on the right are functions (in ¢) of finite variation, while if n is
large enough, P(7,, > t) > 0 since T}, 1 co. This shows that f(¢) is of finite
variation on each [0, t]. O

In fact, it is easily seen that a deterministic martingale must be constant.
Also, this theorem gives immediately an example of a process which is not a
semimartingale: any deterministic process with paths of unbounded variation
will do.

Notes and Comments

An excellent reference for measure theory is [Do093]. The fundamentals of
functional analysis can be found in [Rud73].

The definitions of processes, filtrations, stopping times etc. are standard
and can be found in any book on stochastic processes. See for example
[RY90, Mét82, Wil79, DM78, JS87, Pro92, vWW90, KS88, L.S89] to name
but a few. The theory associated with these definitions is usually called the
general theory of processes.

Constructions of BM*(R?) and PP(\) abound, especially that of PP()\)
which is much simpler (see [KT81] for instance). The book [Kni81] has
many different constructions of BM®(R?), but see also [SV79, Wil79, KS88,
RY90]. The proofs that BM°(R) has paths of infinite variation, along with
many other esoteric properties are usually given in those books too. See in
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particular [Nel67] for a delightful account of the physical theory of Brownian
motion.

That naive stochastic integration is impossible is taken from [Pro92]. A
superb, definitely recommended, survey of stochastic calculus is the appendix
by P.A. Meyer in [EM89].

There are essentially three different approaches to constructing the stochas-
tic integral. The oldest follows the historical development quite closely. If
X is an IV process, H - X is defined as a path-by-path Lebesgue-Stieltjes
integral. If X is a square-integrable martingale, the full Doob-Meyer de-
composition theorem is used to write X? = M + (X, X), where (X, X) is
a predictable, increasing process (when X is continuous, (X, X) = [X, X]).
Writing p(A) = E[14 - (X, X)] on P, yields a measure which can be ex-
tended to P. Then the equation E(H - X, H - X) = EH? - (X, X) yields
an isometry from L?(Q2 x R, ,P,u) to the Hilbert space H? of all square-
integrable martingales, so that we can use (H - X, H - X) = H? - (X, X) for
all H € L*(Q2 x Ry, P,u) to define H - X unambiguously (up to indistin-
guishability). Proper use of stopping times and decompositions then gives
the martingale integral and if X = M + A is a semimartingale, the inte-
gral H - X is defined to be H - M + H - A. It must then be checked that
the process does not depend on the decomposition or the stopping times
used. See the classical lecture notes [Mey76], which extended [KW67]. See
also [Mét82, JS87, DM80, LS89, vWW90| for the complete theory. The
books [CW83, RY90] deal only with continuous semimartingales. I believe
the books [RW87, IW81] also belong in this category, though I haven’t seen
them. The paper [Rog81] is a short, but more detailed review, but see also
[Del80], which initiated the third approach to stochastic integration. The
original work of Itd used the isometry in the special case of BM°(R). See
his book [It651].

The second method for defining the stochastic integral is closely related
to the one presented here. One considers a vector integral in Hilbert space
(this applies to L?-martingales, which yield orthogonally scattered measures,
see [Mas68]) or in Banach spaces (see [Kus77, Yor78] and most certainly
[Pel73, Mét73], though T haven’t seen them) or in the Orlicz space L°(Q, F,P)
(initially in [MP77], and after that in [MP80] and more recently in [Kwa92]).
The vector integration theory used always seems to be a suitably adapted
version of [DS58], section IV.10. This requires some knowledge of functional
analysis, especially with L°-integration theory. To the best of my knowledge,
the simplicity (inspired by [KK76]) of using duality to reduce vector integra-
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tion to real integration is always overlooked, in the context of the stochastic
integral. Note however that using duality doesn’t work for L°-measures, since
L°(Q, F,P) has trivial dual.

At the time of this writing, I also became aware of [Ra093], which promises
a unified treatment via vector integrals, though I am not quite sure where it
fits in the above.

The third approach to the stochastic integral represents a Daniell-type
vector integration theory in L°(2, F,P). For simple processes, the elemen-
tary integral is defined essentially as we did, but now it is considered as a
continuous linear map satisfying the DCT into L°(Q, F,P), topologized by
convergence in probability. It is then extended to larger and larger classes of
processes and ultimately to locally bounded predictable processes (and be-
yond!). See [Pro92| for a complete exposition, although [Pro86] is certainly
easier to read. This approach was pioneered in the review paper [Del80]. See
also [Bic81], which is harder than [Pro92|, but well worth it. When doing
vector measure theory in L°(Q, F,P), it is important to have bounded mea-
sures. It turns out that every vector measure into L°(Q2, F,P) is bounded,
but this is far from trivial; see [KPR82] for example. The paper [Sch80] ex-
plores what happens when the measures ux are not defined everywhere, as
is the case for Lebesgue measure on R, which is infinite on some sets.

On the topic of changing the stochastic basis, the result about shrinking
the filtration was originally discovered in [Str77], but was much more difficult
to prove, as it considered semimartingales without reference to vector mea-
sures. There are some partial results on augmenting the filtration, but no
complete characterization, as far as I know. See [Jeu79, JY85| for example.
The result about absolutely continuous changes of probability can be much
improved. A locally summable process stays locally summable, and there is
no need to bound dQ/dP at all in that case. I suspect that the proof pre-
sented for bounded dQ/dP can be localized, but I don’t quite see how at the
moment. The way the semimartingale decomposition changes with Q is also
known explicitely. It is called Girsanov’s theorem. See [Pr092, Mét82, RY90)]
and many others.

The stochastic DCT is the best reasonable DCT for semimartingales. The
convergence in probability can be improved by putting additional assump-
tions on the integrator. See [Bic81] for a very complete treatment.

The martingale theorems are standard and can be found in any of the
books mentioned earlier. The partial Doob-Meyer decomposition was taken
from [Kry90], as was the multiplicative decomposition of a submartingale
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preceding it.

The fact that PP(A) is not predictable is taken from [vWW90]. The
treatment of the bracket process essentially follows [Del80]. See also [Pro86,
Pro92].

The proof of Ité’s formula comes from [JS87], which was inspired by
[DM80]. It shows that It6’s formula is really equivalent to the definition of
the quadratic variation. Other popular proofs use Taylor series, see [Pro86|
for example. One thing I would like to know is if duality can be used to prove
Ito’s formula via a few applications of the ordinary fundamental theorem of
calculus, much like the vector DCT is proved via duality and the ordinary
DCT.

Finally the discrete-time case, as well as the relation between semimartin-
gales and deterministic processes comes from [JS87]. In discrete time, the
martingale integral is usually known a the martingale transform. See [Bur66).

A few elements are missing in this short exposition of stochastic inte-
gration; some were omitted on purpose, such as the theories of H? semi-
martingales, compensators and the angle bracket, others because then, Part
I would have grown even more, to the point of leaving no room for the ap-
plications in Part II, which is, after all, why stochastic integration is done
in the first place. This is the case for topics such as product integration
and the stochastic Fubini theorem, Hilbert-valued stochastic processes and
their calculus, the Girsanov theorem. As it is, Part I is already longer than
I expected.
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Part 11

Applications and nice results
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The Doléans exponential

Recall that one can define the exponential function e® as the solution to the
differential equation f'(z) = f(x) with initial condition f(0) = 1. Here is
the stochastic exponential:

THEOREM 32. [JS87] Let X be a semimartingale. Then there exists a unique
semimartingale £(X) satisfying the equation £(X) = 1+&(X)_-X. An explicit
formula for £(X) is

E(X), = exp (Xt — X, — %[X, X]g) [0 +AX,)exp(-AX,).

s<t

PROOF: (i) First, note that £(X) is indeed a semimartingale. The first
factor is clearly one, and we are going to show that the infinite product is an
FV process: it is clearly adapted and cadlag. Since X is cadlag, there are
(for each w) only finitely many jumps of size greater than 1/2 on any interval

[0,%]. So if we write Z?(/s = AX 1{ax,|<1/2}, it suffices to check that
Ry = H(l +AX,) exp(—AX,)
s<t

converges and is of finite variation for each ¢t. But |log(l + z) — z| < 2?

whenever |z| <1/2. SologR; =), log(1 + Zz) — AX, is an absolutely
convergent series, for -

Z ‘log(l + EX/S) _AX, < 2:(3\)(/5)2 < [X, X]; < oco.

s<t s<t

Thus log R, and hence R, is an F'V process.

Now let’s show that £(X) indeed satisfies the equation: we start by writ-
ing K; = X; — Xo — 3[X, X]{ and V; = [],.,(1 + AX,) exp(—AX;), so that
E(X) = eXV. Note also that [K,V]¢ = [V,V]¢ = 0. By It6’s multidimen-

sional formula,
1
E(X) = 14+EX)_-K+e" -V + §(S(X)_ . [K, K]
+D(E(X)s = E(X)sm — E(X) - AK, — €= AV})
s<

= 1+&(X)--X - %E(X)- X, X4V 4 %5(){)- X, X
+ 37 (E(X), = E(X)s- — E(X),-AK, — 5= AV}).

o7



Furthermore, e~ -V = 3" _ XAV}, and also £(X); = £(X),- (1 + AXj),
and £(X),_AK, = £(X);_AX,. Substituting into the equation yields

E(X) = 1+&(X) X+ ef-AS,

+ Z (E(X)s__(l + AX;) — E(X)sm — E(X)s—AX, — e AVf)
- 1+ 5()8(_)._ X,

(ii) Uniqueness: Suppose the semimartingale Y also satisfies Y = 1+Y_ -
X. Apply Ito’s formula to W = e~ XY

1
W = 1-W_-K+e % -Y+§W_-[K,K]C—6_K—-[K,Y]C

+3 (W, = Woe + W_AK, — e ¥ AY}),

s<-

and since Y is also a solution, we have AY = Y_AX; also [K,Y]* = Y_ -
[X, X]¢ and AW, = W,_ (e #%:<(1+ AX,) —1). Putting all this into the
equation yields

W o= 1-W_-X+e ™ Y+ ) (Wee®(1+AX,) -1+ AK, - AK,)
s<

= 1-W_ - X+W_-X+> Wee **(1+AX,) - 1)
§<-

— 14W_-A,

where A =" _ (e72%+(1 + AX,) — 1). Taking logarithms as previously for
V', we can show that A is an FV process.

Now observe that Z = W — V satisfies the equation Z = Z_ - A. Thus
if S =inf{t: Z; # 0}, then Zsg = 0 on {S < oo}. Choose T" > S such that
{S < oo} C{T > S} and

[ A<y
15,71

Zt = ZS + (Z—I]S,t] : A) = / Zs_dAs,
15:¢]

Then
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and thus sup,cr|Zy| < §sup,cr|Z;|, which clearly implies sup,or |Z] = 0.

Since T' > S on {S < oo}, it follows that S = +oco. In other words, W; =V,

for all ¢, which means Y = £(X). O
As with matrix exponentials, e®e? # e(**¥) in general. In fact

EX)EY) = 14+EX)_-EY)+EY)_ - EX)+[E(X),E(Y)]
= 14+EX)EY)_-Y+EY)EX)_ - X +EX)EY) - [X,Y]
= EX+Y+[X,Y)),

which is quite easy to remember. As a trivial consequence we have
EX) ' =E(-X + [X, X)).

If X is a continuous process with Xy = 0, the exponential clearly reduces
to

£(X), = exp(X, — L[X, X)

Linear SDEs

The next result is as close as we will come to stochastic differential equations.
A linear stochastic differential equation (SDE) is an integral equation

t
n=m+/md&,
0

where H and X are two given semimartingales. Such an equation is usually
written in differential notation

dYy =dH; +Y,-dXy, Yo = Ho,

which accounts for its name. A solution is any semimartingale Y satisfying
the equation. Our first application of the exponential is an explicit solution
to the linear SDE when H and X are continuous.

THEOREM 33. [RY90] The semimartingale

t
Vi e, (Ho+ [ €00, - X)) )
0
is a solution to the linear SDE (it can be shown to be the unique solution).
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PROOF: By It6’s formula,
Y-X = H(X)- X+6( )(S(X)l ( [HXD) X

= —Hp+ Ho&( X) (E(x X))
—E(X) (E(x ) (X) [H X]) [5( ),E(X)~"- (H — [H, X])]
Y—H—i—[H,X]—[S( )- X,E(X) - H
= Y-H,
and the result follows. O

Perhaps the first SDE to be studied was the Langevin equation
dVi = dB; — BVidt,

where B is a BM°(R) and £ is a real constant. The process V represents the
speed of a physical particle undergoing Brownian motion in a medium with
friction coefficient 3. The solution starting at v is thus given by

t
V,=e P (U —|—/ eﬁsst> .
0

Lévy’s characterization of BM°(R)

Let’s now go back to the mathematical Brownian motion. The following is
a famous result due to P. Lévy:

THEOREM 34. [Pro92] A stochastic process X with Xy = z is a BM*(R) if
and only if it is a local martingale with [ X, X]; = t.

PROOF: By considering the process B—u, it suffices to consider the case
r = 0. We've already seen that any BM°(R) is a continuous local martingale
such that [X, X]; =t. We need to prove the converse.

Since the bracket is continuous, the process X must be too. Now apply
It6’s formula to the C? function f(z,y) = exp(iux + u’y/2), where u € R.

t
2 . 2
equt—l—u t/2 _ -1 —I—Z’LL/ 6qu3+u S/QdXs,
0

where we have used the fact [X, X|; = t. This is just the exponential equation
E(iuX) =1+ E(uX) - (iuX). Since (iuX) is a (complex) continuous local
martingale, we see that £(iuX) is one also. Furthermore,

sup |€(iuX),| = sup | exp(iuX, + u?s/2)| = 6u2t/2’
Sgt Sgt
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which shows that £(7uX) is bounded on each [0, ¢], and hence a true martin-
gale. Then for any ¢ > s,

Ele™ XX F] = Ele ¥ 2 (uX),E(—iuX),| F]
= e W28 (_juX),E[E (uX)|F,]
— efuz(tfs)/Q’
which shows that the increment (X; — X;) is independent of F; and has a
N(0,t — s) distribution. So X is a BM°(R). O
Lévy’s characterization also has a multidimensional version. Suppose B is
a BM*(R?). This means that B, = (Bj},..., Bf), where the B' (i = 1,...,d)
are independent BM® (R)s. For this process, we have [B!, BY] = §¥t, where
of course 6% = 1 if i = j and is zero otherwise. This is easy to see from the
polarization formula

[B',B’| =~ ([B'+B/,B'+ B| - [B'— B/, B' — B]),

A~ =

once it is observed that (B’ + B’)/v/2 and (B' — B’)/y/2 are standard
BMO(R)s.

THEOREM 35. [RY90] A d-dimensional local martingale X = (X!,..., X9)
such that Xy = z is a BM?(R?) if and only if [X*, X7] = §%t.

A characterization of PP()\)

We’ve seen earlier that if N is a PP()), then [N, N] = N. This implies that
if X; = N, — At is the Poisson martingale, we have [X, X] = X + At. The
following theorem is a converse:

THEOREM 36. [Mét82] A cadlag local martingale X with X, = 0 satisfies
(X, X]: =Xe + At
if and only if X; = N; — M\, where N is a PP()).
PROOF: We prove only sufficiency. Let ¢ be a jump time of X. Then

AIX, X]; = (AX,)? = A(X; + At) = AX,,
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so that AX; = +1. Also, because X; = [X, X|; — M is an FV process, the
bracket [X, X]; = Y., AX, is constant between jumps. Let 7,, = inf{? :
[X, X]; = n} be the time of the nth jump. If we write It&’s formula for e™X¢
when t = 7, and ¢t = 7,,_1, then subtract and use the relations [X, X]¢ = 0,
Xr— =X, — MTp — Tu—1), we get after a little rearranging

eiUXT"—l [(1 + iu)e_iu’\(m_‘rnfl) - 1} =1u [(eiu)L : X)Tn - (eiU)L : X)Tn—l] :

S

Now let S, be a localizing sequence so that X'°» is a martingale. We have

]E[X, X]t/\Sn = ]E(Xt/\Sn + A(t /\ Sn)) = A]E(t /\ Sn),

and as n — oo, we conclude, by monotone convergence, that E[X, X], =
At < oo, and X is a true martingale. Since also |e™*-| < 1, we see that
(eX- - X) is an L*-martingale. This means that

1

Ele~n )| F, ] =

so that the waiting times (7, — 7,,—1) are independent of F, _, and have an
exponential distribution with parameter A. This shows that the process

Ny = [X, X]t = Z 1[Tn,00[
is a PP()). O

Time changes

Lévy’s characterization brings up the following reasoning: Suppose (X;) is
a local martingale with [X, X]; = f(¢) for some increasing function f with
inverse g. Then the process Y; = Xy has [Y, Y], = ¢ and hence is a BM°(R).
So X was a BM°(R) running at a different speed. More generally, since
[X, X] depends on w, each sample path of X would be a path of BM°(R)
running at its own speed. This reasoning will now be made precise.

A time change C is a family (C;) >0 of stopping times such that for almost
every w, the map s — C,(w) is increasing and right continuous. A little bit
of thought shows that if we set

Ay =1inf{s: Cs; > t}, teR,,
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then we have Cy4, = ¢t for all t. (Ay)i>o is also a time-change, with jumps
occurring when (' is flat.

The process X is said to be C'-continuous if it is constant on each interval
[Ci—, Cy]. In that case, the process X¢ is continuous.

We will always assume C,, = oo, so that A, = oo also and hence C;,
Ay < oo for t < oo. We also assume Cy = 0.

Now let X be an (F;)-adapted process. We call (F¢,)>o the time-changed
filtration, and X, defined by

(Xo)i(w) = Xeyw)(w) = (X 0 0) (¢, w),

where 0 : (t,w) — (Cy(w),w), is called the time-changed process.
As was seen earlier, we have X¢, € F¢,, that is X¢ is (Fc,)-adapted.
The map o : (t,w) — (A(w),w) is a measurable transformation from the
space ([0, ], P[0,¢]) into ([0, Asy], P[0, Asy]), since o~1(]S, T]) =|Cs, Cr| and
also o7 1([S,0]) = [Cs, Cy]. Now for any two stopping times S,T < t,

(@' pxc) 00) (5, T]) = (', 1x0) (JAs, Ar])
= <$I,XT—XS)

= (@, ux)(|S, T]),

and similarly for stochastic intervals [S, 0]. So by uniqueness, (', ux.)oo =
(«', px) on P[0,t]. Hence we have

/ (Ho0)d(e!, px) = | Hd(', ),
[0,A:4] [0,t]

which means that Hec - X¢ = (H - X)¢. The stochastic integral is stable
under continuous time changes.

Time changes of Brownian motion

THEOREM 37. [RY90] If M is a continuous local martingale such that My =z
and [M, M|, = oc, and if we set

T; = inf{s : [M, M]; > t},

then B, = My, is a BM*(R) relative to the filtration (Fr,), and M; = By,
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PROOF: Each T is a.s. finite since [M, M], = oo, and if s, | s, then
T, | Ts by continuity of [M, M]. so T is a time-change. The process M
is T-continuous, for if [M, M] is constant on a stochastic interval [U, V], the
Riemann approximation shows that M must be constant on [U, V]. Also,

(B, B]; = M%t — M§ —2(Myp - Mrp); = [M, M), =t,

and although in general Tja,ar, > ¢, the equation By, = Mr,, ,,
follows because M is constant when [M, M] is.

It remains to check that B is a (filr,)-local martingale. For this, let (.S,)
be a localizing sequence such that M!S® is a u.i. martingale. If R,, = inf{t :
T; > S}, then R, is an (Fy,)-stopping time and BJ:R" =My, = M'Tf" is a
martingale by the stopping theorem. But clearly R, 1 oo, which completes
the proof. O

What happens if P([M, M|, < oo) > 0?7 Intuitively, we expect to get
a stopped BM*(R). This is indeed the case, but there is a slight difficulty.
Suppose 2 = {w} consists of only one point. Then all our stochastic processes
are deterministic, and Ry x Q clearly doesn’t support a BM°(R). But any
constant process M;(w) = ¢ for some constant ¢ is a local martingale with
[M, M]; = 0. How can we say in this case that M is a stopped BM¢(R)?
The answer is to enlarge the probability space.

Take any stochastic basis (€', 7', (F}),P') which supports a BM°(R), B'.
Let

]t:Mt

O=0xQ, F=Fr,0F, P=PaP,

and let Bi(w,w') = Bi(w). Then the process B is independent of M and we
can define

t
B, = Mr, +/ L{s>[M,M]0 14 Bs,
0

so that .
[B, B, = [Mr, Mr]; +/ Lis> (MM} dS = t.
0
This shows that B is a BM°(R), and of course we have
BIM Moo _ My,
which means M7 is a BM°(R) stopped by [M, M]u.

Here again, there is an extension to the multidimensional case:
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THEOREM 38. [RY90] Let M = (M',..., M%) be a continuous vector-valued
local martingale such that M, = x, [M*, M*],, = oo for every k and [M*, M7] =
0 for 7 # 7. If we set

T} =inf{s : [M* M*], > t},
and Bf = MF,, the process B = (B',---, B%) is a BM*(R?).
t

Observe that, while we don’t assume anything about the components of
M, the components of B are independent!

Recurrence of BM?(R?)

Now let B be a BM?*(R%) and consider the ball K = {z : |z| < R}. We
would like to know when B first leaves K, assuming |zo| < R. Let T =
inf{¢ : |B;| > R}. By It0’s formula,

d
‘BT/\n‘Q = |Bo|2 + 2 Z(BZ, . Bi)T/\n +d(T An).

i=1

Now for each 4, the process (B% - B')” is a martingale, since its quadratic
variation is bounded by R?t. Thus it will disappear when we take expecta-
tions. So we get

E|Bran|? = |w0]> + dE(T A n).

But because |Brp,| < R, we have E(T An) < d~'(R? — |z4|?) for each n, so
letting n — oo produces the equation

ET = d ' (R? — |zo|?).

We are also interested in knowing when B reenters K. So suppose |zg| >
R > 0, and for each n consider the annulus Ay = {z : R < |z| < 2¥R}. The
stopping times Sy = inf{t : B, ¢ Az} T S, where S is the first hitting time
of K. For any C? function f (which may not be defined throughout K), we
have by Ito’s formula

d

F(Bs) = flao) + S (DS (B) - Bls + [ Af(Buo)is

=1
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So if we choose f to be a C? function such that for |z| > R/2,

x ifd=1,
f(x) =< —loglz| ifd=2,
|z |>d if d > 2,

then Af = 0 on each A, and the variables (D;f(B) - B)s
expectation. Hence we get for each k

Ef(Bs,) = f(xo).

Explicitly for each d, this equation says (where we set p, = P(|Bg,| = R)

. again have zero

e d=1: ka -+ qukR = Ty,
e d=2: pylog R+ qx(log R + klog2) = log |x/,
o d>2 pR* 4 (25 R)* ™ = |o[* Y,

and as k — oo, this implies g — 0 when d < 2 and also py — (|zo|/R)?>~
when d > 2.

We have shown that BM?*(R¢?) is neighbourhood recurrent when d < 2
and transient when d > 2! It can be shown, however, that unless d = 1, the
BM?®(R%) never returns to any given single point.

Random generalized functions

Let’s recall some terminology from the theory of Schwartz distributions (gen-
eralized functions). We denote by D = D(R) = C¥(R) the space of C*
functions ¢ : R — R which have compact support. The following function is
easily seen to be in D:

[ exp(—1Lz) if|z] <1
‘p(””)_{o if 2] > 1
Note that it clearly satisfies [ ¢(z)dz < co. So the function p, defined by

()
p(z) = @)z’
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integrates to one.

D is a topological vector space with topology such that a sequence (¢,)
converges to ¢ in D if and only if there exists a fixed compact subset K C R
containing the supports of all the ¢, such that (¢, — ¢) and its derivatives
of all orders converge uniformly to zero on K.

A Schwartz distribution T is an element of D', the topological dual of D,
so that whenever ¢, — 0 in D, we have (T, ¢,) — 0. Here as usual, (T, @)
denotes the value of 7" on ¢.

Here are a few classic examples of Schwartz distributions:

Given a Radon measure (finite on compact sets) p on R, we get a distri-
bution 7}, by

(Tus ) = /R pdy.

In particular, if f is a locally Lebesgue-integrable function, we get a
distribution T by

Ty ¢) = / (@) f(@)da.

We usually denote Ty simply by f.
Our third example is the important Dirac delta function 6,. It is the
distribution defined by

(0a; ) = ().
By analogy with the case T = T}, we usually define the symbol 6(z) by

‘4 3(z — 1) p(y)dy = (62, ),

so that we have symbolically 0 = §y = Tj.

Schwartz distributions have an interesting physical interpretation: exact
measurements being impossible, if we were to measure the value of a function
f on R in a physical experiment, the instrument used would allow us to get
only an average value

<ﬂ@z4@@ﬂ@M,

different measuring instruments being characterized by different functions ¢.
The functions p,(z) = np(nz) have shrinking support around z = 0. So
they might represent better and better measuring instruments. The sequence
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(pn), called a mollifier, has a very useful property: given a locally integrable
function f, we can convolve it with p, to get

fal@) = (pu * )@ /fw— ¥)paly

The functions f, are C*° and converge to f in D.

In contrast to ordinary functions, distributions can be differentiated in-
finitely often as follows. Let D denote differentiation, then for all ¢ € D,
set

<DT, QD) = _<Ta D(p>.

Note that if T'= T} = f is an ordinary function, then
<Dfa90> = _<Tf,D(p>
- - [ Y@@
R

- Apunwmm
= (fl,¢)

by integration by parts, since ¢ vanishes outside a compact set. This shows
that differentiation in the sense of distributions is a generalization of ordinary
differentiation.

Another classic example is the following. Let H, be the step function
defined by H,(s) = 13 ,,((5). This function is not differentiable at z, but if
we consider it as a Schwartz distribution, we find

(DHy, ) = —(Hg, Do)

- —Lm¢@m5
= o(z)

(02, 0),

which gives us an interpretation of J,: if it were a function, it would be
infinite at z, zero outside {z}, and its total mass would be

0z(8)ds = {0z, ) =1,

Ry
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where ¢ € D is such that ¢(z) = 1. Note that the function H, is classically
differentiable almost everywhere, with derivative zero, which agrees with
almost everywhere. Finally, observe that the mollifier (p,) tends to the delta
function as n tends to infinity.

Now let X be a semimartingale. Any function ¢ € D with support
contained in ]0, oo| is obviously a deterministic FV process, so that it can be
viewed as a semimartingale. Then we can write

X, 6l = Xuplt) = Xae(0) - [ " p(s)dX, - / X (s)ds

Since ¢ is F'V, the bracket vanishes and if we let t — oo, we get

/O " o(s)dX, = — /0 T X (5)ds

Thus if we regard X as a random Schwartz distribution, then stochas-
tic integration corresponds to differentiation in the sense of distributions.
This provides a simple, but of course not very powerful, way of defining the
stochastic integral.

White noise and the BM°(R)

It is interesting to look more closely at the case when X is a BM°(R).
By Fubini’s theorem, we can define the expectation of X in the sense of
distributions (where both ¢, 1 € D(]0, cc[)) by

(EX, ) =B(X,¢) = [ EXipls)ds =0,

and its covariance covX by

(covX,p@vy) = E((X —EX, ‘P><X EX7/1>)
= /RdS/R dt ()Y (t)(cov[X,, X,])

_ /R+ ds/1R+ dt o(s)b(t)(s A 1),

Now lets look at the distributional derivative £ = DX of X:
(EE, ) = E(DX, ¢) = —(EX, Dg) =0,
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and

{cov€,p@9) = (covX, Dy ® Dy)

- /R+ds/R+dw (H)(s A t)
:/dsgo </¢ dt+s/ vt dt)
= [ e | vt

= [ avw [ o

- / (D)D)t
= /R . d(s — t)p(s)y(t)dsdt.

In other words, the generalized process (&) = DX has

Eft = O:
Cov[fmgt] = 6(t - 8),
so it is weakly stationary and uncorrelated. Finally, we can take a look at
its “generalized spectral density”. For any ¢ € D, let

1

1 (1) dt.
o /.° o(t)

¢ =
Then . )
6.0 = (5.9) = o= [ ol = (5.9)

and we see that the spectral density of £ should be constant. This is why &
is interpreted as white noise: every spectral frequency is equally represented.
We refer to [GV68] for a much more complete treatment of generalized ran-
dom processes.

It6’s formula for convex functions

If f is not a C? function, it is nevertheless often possible to approximate it
by C? functions, even C™ functions for that matter. The question then is
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whether It6’s formula is still true when passing to the limit. One constraint
is certainly that f(X) should again be a semimartingale. The following
theorem shows that if f is a difference of convex functions, It6’s formula may
be extended.

THEOREM 39. [RY90] Let f : R — R be convex, and let X be a semimartin-
gale. Then f(X) is again a semimartingale and there exists an adapted, cadlag
increasing process A’ such that (here D_f is the left derivative of f)

f(X)=f(Xo)+D_f(X_)- X + A
Moreover, the jumps of A/ are given by
A, = F(X) — F(Xi) — D_f(X, )AX,.

PROOF: The proof is along the same lines as the proof of the standard
It6 formula. By stopping, we may assume that X is bounded during longer
and longer stochastic intervals [0, 7},[. In that case, both f(X) and D_ f(X)
are also bounded.

Now choose a mollifier (p,) with compact support in | — 0o, 0] and let

fo= / £(@ + ) pal)dy.

Each f, is convex and C?, and the f! increase to D_f. Itd’s formula yields
Fa(X) = falXo) + FL(X) - X + APP,

where

AP = 7 (FalX) = falXo ) = F1(X, )AX) + 1K) [X, X

s<-

Since f is convex, A" is clearly increasing. Applying SDCT now gives the
theorem. It remains only to find the jumps of Af = lim,, A/". This is easy:
from the equation

F(X0) = F(Xo) = (D_f(X ) - X) + Al
we get by applying the operator A

F(X0) = f(Xi ) = D f(X )AX, + AA]L.
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U

The functions z — %, z + |z| = 2+ — 2~ are all convex, so that given a

semimartingale X, the processes | X|, X+ and X~ are semimartingales again.

Furthermore, since tAy = $(z+y—|z—y|) and zVy = $(jz —y|+z+y),

we see that the infimum and supremum of two semimartingales are again
semimartingales. Thus semimartingales actually form a lattice.

Local times

Fix a semimartingale X. If we take f(z) = |xr — a|, then f is convex and
the convex Ito formula applies. For each a, define the process L® to be the
continuous part of the increasing process Af. If we assume X continuous, we
then have the nice formula

X —al = [Xo—al+sgn (X —a)- X+ L%
where sgn_ is the left-derivative of the function = — |z|, i.e.

1 if z >0,
sgn(2) =Y 1 ire<o.

The process (L¢) is called the local time of X at a. Since it is increasing, it
represents a random measure L%(dt) on R, . The following theorem gives an
indication of why L® is called the local time.

THEOREM 40. [RY90] The measure L%(dt) is a.s. carried by the set {t : X; =
a}.

PROOF: Recall that X is assumed continuous. We know that |X — a|
is a semimartingale. By Ito’s formula and the definition of L?,

(X -a) = (Xo—a)’+2[X —a| - |X —a|+[X —al,|X —a
= (Xo—a)?+2[X —a|-sgn_ (X —a)- X +2|X —a|- L* +[X, X].

But 1to’s formula also gives directly
(X —a)?=(Xp—a)*+2(X —a) - X +[X, X],

so that by comparing the two formulas, we get a.s.

t
/ X, — a|L4(ds) = 0,
0
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and the result follows. O

Thus if the measure L*(dt) measures something, it only measures it when
X; = a. What happens if ¢ is fixed? Here is a glimpse at an amazing
generalization of the It6 formula.

First of all, it is possible to show that the function L(a,t,w) = L&(w) is
actually B(R) ® P-measurable.

Next, if f is convex, then its derivative in the sense of distributions is

(Df,¢) = - /]R (lim(’p(“e)_“”(x))f(x)dx

€l0 €

—r (f(x—e) —f(:r)> ,

- / o(2)D_f(z)da.

By integration by parts again, we see that the second derivative f” = D2f
of f in the sense of distributions is the positive measure associated with the
increasing function D_f.

Now here is the theorem:

THEOREM 41. [Pro92] Let f be the difference of two convex functions, D_f its
left derivative, and f” the signed measure corresponding to the second derivative
of f in the sense of distributions. For any semimartingale, f(X) is again a
semimartingale and if (L¢) denotes the local time of X at a, then

FOO) = F(X0)+D-f(X)- X +5 [ 1o
+ Z (f(Xs) - f(Xs—) - D—f(Xs—)AXs) :

PROOF: Omitted. O
Here are a few consequences. If f is C?, then by comparing the formula
above with the earlier It6 formula gives

/R L8 f"(a)da = /0 "X )X, X

Note that f”(z) could be any bounded Borel-measurable function. In par-
ticular, if f(z) =1, then

X, X]¢ = / Lida,
R
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whereas if f(z) = 15(x) for some B € B(R), then

t
/ 1{XseB}d[X,X]§:/L?da.
0 B

It is noteworthy to consider the special case when X is a BM°(R). In

that case, we see that
t
/ lix,emyds = / Lida,
0 B

and L{ represents precisely the total amount of time that X spent in B up
to the instant t. Moreover, if B = {a}, then L{ is the total time spent at the
point a so far. Our time-change results can now give a similar interpretation
for continuous local martingales.

If we let a = 0, then when B is a BM°(R), we also get Tanaka’s formula

|By| = |Bo| + B; + LS,

where 3, = fot sgn_(B;)dB;s is a martingale, the quadratic variation of which
satisfies (3, B]; = fot sgn_(B,)%d|B,B|, = [B,B]; = t. Thus 3 is actually
another BM°(R).

Semimartingale functions of Markov processes

It is possible to show that convex functions are essentially the most general
functions for which Ité’s formula makes sense (i.e. for which f(X) is again a
semimartingale).

The next logical step is to look for functions which take an arbitrary
process and make semimartingales out of them. The solution of this problem
for Markov processes is given in [CJPS80].

Recall a few basic definitions from the theory of Markov processes. We
fix as usual a stochastic basis (2, F, (F;),P) and a state space (E,B). Any
mapping N : E x B — R, is called a kernel if both

e for fixed z € E, the map A — N(z, A) is a positive measure on B,

e for fixed A € B, the map =z — N(z, A) is B-measurable.
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If also N(z, E) = 1 for every x, the kernel N is called a transition probability.
Kernels act on B-measurable functions f by

Nf(z) = [EN(s,dy)f(y)-

Similarly, the product of two kernels M and N is again a kernel given by
MN(a,4) = [ Ma,dp)N(y. ),
E

A transition function on (E, B) is a family (P, (z, A) = P(s,x,t, A))s tcr,
of transition probabilities satisfying the Chapman-Kolmogorov equations:

/ P(s,z,t,dy)P(t,y,u, A) = P(s,z,u, A).
E

Finally, an adapted process X is called a Markov process with respect to
(F:), with transition functions (Ps;), if for any f € B and s < t,

]E[f(Xt)V:S] = Ps,tf(XS)-

The measure Po X' is called the initial distribution of the process.
Here are some examples. The BM®(R?) is a Markov process on (R?, B(R%)),
with transition function given by

Ps,t(.’L',A) = /(27T|t _ S|)_d/2€_‘y_z‘2/2‘t_sldy_
A

It is homogeneous, as Ps; depends only on the difference (¢t — s). Its initial
distribution is d,, the Dirac measure centered at zx.

The PP()) is a homogeneous Markov process on (Z,2%+), with transi-
tion function given by

(At = 9))*
Pi(z,A) = Z e A o ME=9))" 4 ) .
k€(A—z)NZ 4 )

Its initial distribution is dy.
By extending the state space to include time, one can always assume the
transition functions are homogeneous, that is

P(s,z,t,A) = P(0,z,t — s, A),
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in which case we write P,_, instead of P,;, and the Chapman-Kolmogorov
equations read
Puas(, )= [ P(ssdy)P(y. 4)

E

Thus the (P;)icr, form a semi-group.

Given a Markov process, we now aim to find out when f(X) is a semi-
martingale. One says that a function f is ezcessive for X (actually, its
semi-group) if

o P f < f forevery t >0,
o limy P f = f.

If moreover P, f = f for all t, then f is called invariant.
If f is excessive, then f(X) is a (F;)-supermartingale, for

E[f(Xt”j:s] = Ptfsf(Xs) < f(Xs)a

and of course if f is invariant, then f(X) is a martingale. We haven’t used the
second property in the definition of excessive functions, but then we always
work with the usual conditions, which is not the usual setup for Markov
processes.

Thus excessive functions turn Markov processes into semimartingales.
Of course, a composition of a convex function and an excessive function
also yields a semimartingale, etc. Such functions are called semimartingale
functions. The paper [CJPS80] has a characterization of such functions.

Approximating the integral

We’ve seen how Riemann sums may be used to approximate certain stochastic
integrals. Those approximations were in terms of “lower sums”. Recall that
in elementary real analysis, the Riemann (and also the Riemann-Stieltjes)
integral is defined as the common limit of upper and lower sums, whenever
these are the same. For the stochastic integral however, upper and lower sums
cannot have a common limit in general (for if they did, the integral would
reduce to a Riemann-Stieltjes integral). The following theorem shows that
by choosing our approximations correctly, we can “modify” some properties
of the stochastic integral.
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THEOREM 42. [RY90] Let X, Y be semimartingales where Y is also contin-
uous. Given a probability measure on [0,1], write & = [ Au(d)). Provided the
paths of [X, Y] are absolutely continuous, then for any (deterministic) refining
sequence (A,,) of finite partitions of R, and any C'! function f, the partial sums

1
Z/ /‘L(d/\)f(}/;i+)\(ti+1_ti))(X|ti+1 - X|ti)
A, V0
converge in ucp to
fY)- X +uf(Y)-[X,Y].
PROOF: By using f(Yx,) — f(Vs) = [ f/(Yy, + s(Ys, — Y,))ds where

we are abbreviating \; = ¢; + A(t;41 — t;), we can write

Z(Xt/\tH»l - Xt/\ti)/o f(Y)\i):u’(d)‘) = Zf(yti)(X‘tiH - X|ti)

An

£ - X / F(Y2) (Vs = Vi) u(dN)

+ Z(Xt“HI - Xtti)/o' :u(d/\)/(; ds (f,(Yti + S(Y)\i - Ytz)) - f,(Yfz)) (Y)\i - Yti)'

Now the first sum is just a Riemann approximation of f(Y) - X which thus
converges in ucp. Also if K, = sup,ca, Supsepoq [f' (Ve +s(Ya, — Y4,)) —
f'(Yy,)] then K, — 0 a.s. since f € C'(R), and the third sum is dominated
by

1
SO — x| / (AN KoV, — Y4
0

An

) 1/2 1/2
< / ,U'(d)\)Kn (Z(Y)\z _ Yti)Q) (Z(Xt|ti+1 _ Xtti)2> ’

An An

which converges to zero in probability on each interval [0, t].
Finally, rewrite the second sum as

Z/0 ,U(d)\)f’(ytl)(y)\l - Yti)(Xf‘,)\i - Xtm)
+Z/0 p(d\) f (V) (Ya, — Yti)(Xt\t,-_,_l B Xf!/\i),
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where the second part is really H" - X,
= Z fl(Yti)(Y/\i - Yti)l])\iati-Fl]'
Ap

By stopping at Ty = inf{t : |Y;| > k}, we see that H" is locally bounded, so
by SDCT H™ - X converges to zero in ucp.

It remains to look at the first part of this sum. Since [X, Y] has absolutely
continuous paths, there is a continuous process A with [X, Y], = fot Agds.
The following steps, explained below, then yield the result:

hmzf Yi)( IAz_ ‘tl)(Xp\ X4 = hme [XYP‘ (X, Y],%)

ANt
= 1im Y (v / Ayds
AV

_ /\/Ot FV)dIX, Y],

The first equality is seen as follows: write H = f'(Y), and H" = ), Hy 1y, A
Then in ucp,

i 3, (XY - (V]
= limH"- [X,Y]
= hmz X|/\1Y|/\ X|t¢Y\ti) — Hy X, (Y|/\¢ _ Y't") — H,Y. (X‘)‘i B X|ti))
= hmZHti X\)\z _ X\tz)(yp\l _ Y\tl)

An

For the last equality, note that

ANt t AN
|Z/ Asds—)\/ Ayds| = |Z/ Agds = " A AMtipr At —t; A1)
An t; 0 An t An
ANt
< Z/ |A, — Ay |ds,
Ay Tt
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which tends to zero by continuity of A. O
Here are now some striking applications of this theorem. They may
also be thought of as an important warning for the numerical evaluation
of stochastic integrals:
Suppose X is a continuous semimartingale. Then for any C? function f,
recall that 1t6’s formula is

FOX) = F(Xo) + S ) - X+ S f(X) - [X, X].

We now would like to naively approximate (in probability) the right-hand
side via Riemann-Stieltjes sums.

Thus we take a refining sequence of (deterministic) partitions (A#), where
we have A# = {t,,0 < 75y < t,1 <...}, and the 7/; are chosen at random ac-
cording to the probability measure p. The n-th approximation of an integral
H - X will be written

AMH-X), = ZHT::Z (Xt\tn(i+1) _ Xf!tm)
AL

Applying this to the It6 formula gives
1
FUX) = f(Xo) + EmAR(F/(X-) - X) + SAR(/(X-) - [X, X])

= () + F(X) X+ (54 B(X) - [X,X]
= JO0) + R0 - [X, X,

Thus in general, unless [X, X] = 0 say, our naive approximations will not
yield f#(X) = f(X) as expected, but will produce a process which might be
very different!

In fact, looking back at the theorem, we see that we get valid Riemann-
Stieltjes approximations of (arbitrary) stochastic integrals only when u(d\) =
do(dX), the probability measure which is concentrated at 0. Other popular
measures are the choice p(d)\) = 61(d)), which yields approximations con-
verging to the “backward integral”, and more importantly, p(dA) = d1/2(dX),
which yields the “Stratonovich integral”.

Stratonovich stochastic integrals

The previous theorem allows us to consider other “stochastic integrals”. The
most ubiquitous is called the Stratonovich integral. It is usually defined when
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B is a BM°(R)as the limit in probability

/ f *dB = llme (ti+tiy1)/2 Btz+1 Btz)

= (B) B+ [ 1B

For our purposes, given two semimartingales X and Y, we define the
Stratonovich integral of Y with respect to X as

t
1
[ Ve wdX, = (07X Y
0

When Y is continuous, this clearly is the ucp limit of Y5 ¥(4;44,,,)/2(X ltir
XI%), provided that [X,Y] is absolutely continuous.

The reason for ever considering Stratonovich integrals lies in the following
theorem:

THEOREM 43. [Pro92] Let X be a semimartingale and f be a C® function.
Then

f(Xy) = f(Xo) = /f D xdX, 4+ (f( (X,.) = (X, )AX,).

s<t
PROOF: Given the definition and It6’s formula, it suffices to show

SIC) - XX

LX), X]" =

By applying It6’s formula to f'(X) yields

[F/(X), X1 = [F(X2) - X, X)° o S [F9 () - [X, X, X"

and the result follows because [X, X] is an FV process. O

Thus Stratonovich integrals follow the usual rules of calculus. On the
other hand, there are also drawbacks. The most important one is that if X
is a local martingale, fot H, x dX, isn’t one anymore, so that the powerful
stability under semimartingale decomposition is lost.
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Financial option pricing

On the stock market, it is possible to trade call options for stock in some
company WXYZA Inc. The holder of such an option is allowed to buy stock
in WXYZA at a fixed striking price, regardless of the fluctuations of the
actual price of the stock. Similarly, a put option allows one to sell WXYZA
stock at a fixed price. Options have naturally expiry dates, beyond which
they become worthless. An American option can be exercised at any moment
until expiry, whereas a Furopean option works only on the expiry date. The
natural question to ask is: what are such options worth? Here is Black and
Scholes’ answer, for the case of a European call option:

We assume no stock dividends, no transaction costs and continuous trad-
ing. The stock price S; at time ¢ is supposed to satisfy the equation (in
differential notation, as is customary):

dSt = /J;Stdt + GStdBt,

where p, G are real constants and B is a standard BM. The filtration (F;)
used throughout is the smallest standard filtration containing o(B; : s < t).

Pick an arbitrary investor with a portfolio consisting of fy units of
WXYZA call options, all expiring at the same date ty;, and fs units of
WXYZA stock. At time ¢, the worth I of the portfolio is

It = fW(ta Sa W)W(t, S) + fS(ta Sa W)St

We assume fiy and fs are at least C? and (F;)-adapted. This means that
the portfolio mix can only depend on the past history of the stock price.

What we are interested in is W (¢, S): it is the worth of an option at
time ¢ (obviously then W (¢, S) = 0 for ¢ > ¢4, and it should also be C? and
(F)-adapted). At any moment, the investor is allowed to alter the mix of
WXYZA options and stock in his portfolio, thus altering its worth, but it
must always contain nothing but WXYZA options and stock. If the portfolio
is self-financing, i.e. the investor buys stock with the money he makes by
selling options and vice-versa, we have

W (t, S, W)dfw + Sidfs = 0.
Applying the It6 formula with this constraint gives

ow ow 1 oPW

ow

+ fSNSt> dt+ (fwﬁ + fs) G SdB,.
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If we set
fW +fs—0

then the second integral on the rlght disappears: the portfolio is “riskless”.

If now, in flagrant disregard for the rules, the investor were to suddenly
decide to convert his whole portfolio into another “riskless” asset, such as
treasury bills or a bank account, with constant continuously compounded
interest rate r, dI; would become

dIt = T(fww + fsSt)dt

for all subsequent t.

The idea now is to say that if W (¢, S) is a fair price for the option, then
the investor should not be able to make (or lose) money by converting his
portfolio to other “riskless” assets. This means we get the equation

ow ow ow

G St g5z T HY g a1

t 952
with the boundary condition
W (to, S) =0V (S, — E),

where F is the striking price.
The above equation can be transformed into the heat equation. Thus the
solution becomes

W(t,S)=SN(0,1)(] — o0,d1]) — EN(0,1)(] — OO’dQ])efr(tftg),

where N (0, 1) is the normal distribution

1
N(0,1)(dz) = \/—2_7r6$2/2da:,

and the constants d; and dy are given by

_log(S/E) + (r + 5G*)(t — to)
' G(t —to)1/? ’

and
dy = dy — G(t — to)"/%.

82



Notes and Comments

The Doléans exponential has many uses, quite a few of them in the theory of
stochastic differential equations (SDEs) as expected. But it can also be used
to prove the Girsanov transformation formula, which is one of our major
omissions, and relates the decompositions of a semimartingale under two
equivalent probability measures.

We did not look at SDEs more closely, mainly out of concern for the size
of this honours thesis. But as with ordinary differential equations (let alone
PDEs!) the number of explicitly solvable SDEs is terribly small. Most books
with the words “stochastic differential equations” in their titles deal only
with equations of the form

¢ t t
/ dXs ==z +/ a(s, Xs)ds + / o(s, Xs)dBs,
0 0 0

where B is a BM°(R). For such equations the original integration theory
of 1to is quite sufficient. See for example [(Dks85, Sko89, Arn74, Fri76|, and
more generally, most books written before the late 1980s. The book [KP92]
contains a nice list of explicitly solvable equations of this type. For semi-
martingale SDEs, [Pro92] is excellent. Nonlinear SDEs are considered in
[Mao094].

The characterizations of BM°(R) and PP()\) are by now classics. The
result that any continuous local martingale is a time-changed (and possibly
stopped) BM°(R) has a precursor in the following famous theorem of Paul
Lévy:

Let B be a BM?*(C) and f : C — C be analytic and non-constant. Then
f(B) is a time-changed BM*(C). More precisely,

f(Bt) = f(BO) + Bct’

where C, = [ | f'(B;)[?ds and B is a BM°(C).

The books [RY90, Dur84] contain many more results on the interaction
between analysis and probability.

Our treatment of local times is very limited. An excellent survey of what
can be done with them and the related theory of excursions is [Rog89]. In
particular, the theory of excursions yields a surprising relationship between
the BM°(R) and PP()). This seems to have been first noticed by It6 in
[It670].
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The interpretation of the BM°(R) as an integral of white noise is very
old. For the random Schwartz distribution treatment, see [GV68]. See also
[Hid93].

Approximating the stochastic integral is of course a very important topic.
The book [KP92| deals exclusively with this in the case of integrals (H - B)
where B is a BM°(R). Tt is also interesting to note that most books which
deal with the original It6 integral (that is, do not mention semimartingales)
define it by Riemann sums. As we saw, this procedure does not generalize
to even all local martingales.

Another important issue related to approximations is the matter of mod-
elling. There are many arguments in the scientific literature about which
integral, 1to or Stratonovich, is appropriate in models of various systems
under the influence of random effects. As we saw, the resulting processes
can have quite different qualitative behaviour. Usually, the SDEs in those
models are approximations to difference equations anyway, and knowing how
approximations converge can be of help in deciding which integral to choose.

Finally, the option-pricing formula first appeared in [BS73]. We follow the
review paper [Sha90] which also contains clear explanations of many other
topics in finance. We only dealt with European options. The same problem
for American options is more difficult. See [DHRW93] for a solution.
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