
MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME
THEORY AND SIMULATIONS

L.A. BREYER

Abstract. We discuss some simple theoretical properties of web page ranking

distributions, including PageRank (Brin and Page, 1998), which are based on

uniformly ergodic Markov chains. We also propose a modification of PageR-

ank whith reduces the bias for older documents, and discuss details of our

simulation programs.

1. Introduction

The purpose of this note is to report on several simulation experiments involv-

ing Markov chains defined upon a subset of the World Wide Web. The underlying

dataset consists of 916, 428 publicly available web documents provided by the Inter-

net search company Google Inc., as part of its First Annual Programming Contest.

At the time of writing, Google’s full repository, which is the largest of all public

search engines, references some three billion web pages. Thus the donated dataset

represents one three thousandth of the publicly indexed web, which itself is a subset

of the full World Wide Web. Estimates of the true size of the Web vary wildly;

moreover a recent study (Labovitz et al, 2002) has shown that at least 5% of the

Web (the so-called dark address space) is physically unreachable, depending on

one’s Internet Service Provider. The dataset iself requires some 1.5 Gb of storage

space in compressed form.

We shall present here the results of running several Markov chains on the link

graph G associated with this dataset, so as to obtain steady state distributions. A

full statistical analysis is beyond the scope of this document. Due to the size and

format of the data, building the graph in reasonable time on a small machine with

Date: April, 2002.

1991 Mathematics Subject Classification. Primary 60J, Secondary 60F.

Key words and phrases. Search engines, Bayes Theorem, Information Retrieval, PageRank,

Markov chains, Resolvents.

1

2 L.A. BREYER

memory constraints is nontrivial. Several sections of this report are concerned with

explaining some of the design decisions, and what can be expected from distributed

simulations. The source code for the programs is freely available from the author,

but the dataset should be obtained from Google Inc.

The major theoretical motivation for running Markov chains on the link graph G

is that the steady state distributions π of these chains can be used to obtain docu-

ment rankings for Information Retrieval. This approach, which differs substantially

from classical probabilistic IR (Sparck Jones et al., 1998), was pioneered by Brin

and Page (1998), who used the following formula for the PageRank, πPR(x), of a

document x ∈ G. Writing x → y to denote the existence of a direct link from

document x to document y, this is defined as

(1) πPR(x) = ε/ |G|+ (1− ε)
∑
y→x

πPR(y)/ ‖y‖ , ‖y‖ = #{z : y → z},

where |G| denotes the size of G.

Any two documents x and z can be ranked a priori according to the total order on

G given by x ≥ z if and only if πPR(x) ≥ πPR(z). It is remarkable that such a simple

ranking gives rise to a demonstrably improved Information Retrieval system, and

other authors have quickly proposed alternative rankings based on Markov chains

(Kleinberg, 1999; Borodin et al, 2001).

The general strategy consists in defining a ranking π(x) as the steady state

distribution of a Markov chain X0, X1, X2, . . . , whose transition probabilities

P (x, y) = P(Xt+1 = y |Xt = x) satisfy

(2) π(x) =
∑

y

π(y)P (y, x), x, y ∈ G.

In the special case of PageRank, we have

(3) PPR(x, y) = εµunif(y) +
(1− ε)
‖x‖

∑
x→z

δz(y),

where µunif(x) = |G|−1 is the uniform distribution on G, δz is the point mass at

z ∈ G, and ε is a parameter 0 < ε < 1. Thus the Markov chain dynamics mimic an

“easily bored web surfer”: given Xt = x, with probability (1 − ε) we choose Xt+1

randomly among all outgoing links from x, while with probability ε we choose Xt

uniformly among all documents x ∈ G.

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 3

One difficulty in using a definition such as (2) alone is that there may be several

distinct solutions π, all of which are probability measures. Moreover, some transient

subsets S of G may not be ranked at all (i.e. π(x) = 0 for x ∈ S). The existence

and multiplicity depends on the actual geometry of the link graph G, which is

not directly under control, and in fact must reflect an ever changing World Wide

Web. The algorithms of Kleinberg (1999) and Borodin et al. (2001) suffer from this

multiplicity, for carefully constructed graphs G. Interestingly, PageRank does not,

and this is due to the strong minorisation condition (6). In fact, πPR(x) ≥ ε/ |G|

for all x ∈ G.

The output of a search engine such as Google’s has a simple Bayesian interpre-

tation as a posterior distribution, which we now illustrate. Take Ω as the set of

all valid query tokens (i.e. words), and write ω ∈ x if the document x contains the

token ω. Valid tokens can be single words, or could conceivably be full sentences.

We want to model a query U ∈ Ω for an unknown document Y ∈ G. Bayes’ formula

states

P(Y = x |U = ω) = P(U = ω |Y = x)P(Y = x)/P(U = ω),(4)

∝ L(ω, x)π̃(x),

where L(ω, x) is the likelihood of the query being ω, given the document is x, and

π̃(x) is the a priori probability of seeking document x.

Perhaps the simplest model of this type is given by L(ω, x) = |x|−1 1{ω∈x}, where

|x| is the number of distinct valid query tokens ω contained in x. The interpretation

is that all queries resulting in document x are equally likely, and all documents

sought must contain the query token. If we take π̃(x) = Z−1 |x|π(x), where Z is

the appropriate normalising constant, and π is an a priori distribution on G such

as PageRank, then we see that (4) models exactly the output of the search engine

(which lists documents containing ω in order of decreasing probability), for by our

definitions we can write

(5) P(Y = x |U = ω) = 1{ω∈x}π(x)/ν(ω), ν(ω) =
∑

x

|x|π(x).

In Section 4, we introduce a modification πD of πPR which penalizes documents

according to their age, or last date of modification. This follows the rationale that

4 L.A. BREYER

older referenced documents are less likely to offer timely information, and more

likely to no longer be directly accessible on the Web.

2. Simple properties of PageRank

In this section we discuss the family of page ranking distributions based upon

(2), of which (1) is a special case. We begin by solving these equations.

For page ranking schemes π which are based upon a Markov chain such as (2),

the calculation of π is particularly simple if the transition probabilities P (x, y) are

in the form

(6) P (x, y) = εµ(y) + (1− ε)Q(x, y), 0 < ε < 1.

Note that the PageRank scheme (3) is of this form. It is well known that this

decomposition of P implies that the Markov chain Xt is uniformly ergodic (Meyn

and Tweedie, 1993), so that the powers of the matrix P must converge to a unique

distribution π geometrically fast: ‖Pn(x, ·)− π(·)‖ ≤ Cεn, where C is a constant

and ‖·‖ is total variation (L1) norm, x ∈ G being arbitrary.

More recently, work on perfect simulation with Markov chains (Wilson, 2000;

Breyer and Roberts, 2001) has uncovered a representation formula which permits

a solution of (2) directly in terms of (6). Due to its importance in this report, we

state it as a theorem.

Theorem 1. Let π be a probability distribution satisfying (2), where P is of the

form (6). Then for every 0 < ε < 1,

(7) π(y) = ε

∞∑
k=0

(1− ε)k
∑
x∈G

µ(x)Qk(x, y),

Proof. See Breyer and Roberts (2001), Appendix. �

This solution can be used to sample directly from π, see Section 6. Here we want

to concentrate on the special case of PageRank, so we state:

Corollary 1. Let πPR(ε) denote the PageRank distribution solving (1) uniquely,

and let

QPR(x, y) =

1
‖x‖
∑

x→z δz(y) if ‖x‖ > 0,

δx(y) otherwise.

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 5

If µunif is the uniform distribution on G and 0 < ε < 1, then

(8) πPR(ε)(y) = ε
∑
x∈G

µunif(x)
∞∑

k=0

(1− ε)kQk
PR(x, y),

where Qk
PR is the k-fold matrix product of QPR, the transition matrix of a Markov

chain on G which follows outward links randomly.

We can now ask what happens if we change ε and/or µ. In both cases, we

strictly speaking leave the PageRank family πPR, but stay within the broader class

of solutions to (2) and (6).

Consider first the effect of a change from µ to µ′. Since µ is a probability

distribution on G, there always exists a set of weights (Radon-Nikodym derivative)

u(x), x ∈ G such that µ′(x) = u(x)µ(x).

Proposition 1. Let u(x) be a series of weights with u(x) > 0 for all x ∈ G and∑
x u(x)µ(x) = 1. Suppose π solves (2) and (6), and put π′(x) = u(x)π(x). Then

π′ solves (2) where P is replaced by

(9) Pu(x, y) = εu(x)µ(x) + (1− ε)Qu(x, y), Qu(x, y) = Q(x, y)u(y)/u(x).

Proof. By Theorem 1 and the definition of Qu, we have

u(y)π(y) = ε
∞∑

k=0

(1− ε)k
∑
x∈G

µ(x)Qk(x, y)u(y),

= ε
∞∑

k=0

(1− ε)k
∑
x∈G

µ(x)u(x)(Qu)k(x, y),

and applying Theorem 1 in reverse yields the claim. �

Note that Pu is not necessarily a transition probability matrix for a given set of

weights u, but the fundamental representation formula always holds. Since G is

finite, by renormalising Pu we can insist that
∑

y Pu(x, y) ≤ 1 for all x, but the

corresponding probabilistic interpretation is of a “bored web surfer who is likely to

turn off the computer in disgust”.

As described in the introduction, the main motivation for simulating Markov

chains on the link graph G is to obtain the steady state distribution as a Bayesian

a priori measure for the importance of indexed documents. From (5), if we replace

π(x) with the weighted version u(x)π(x), the effect is the same as keeping π(x) and

changing the likelihood L(ω, x) to L′(ω, x) ∝ L(ω, x)u(x).

6 L.A. BREYER

This has the following practical implication: for a search engine based upon (2)

and (6), simple modifications of the list of returned documents are easily accom-

plished without changing the overall architecture, only the Markov chain back end.

For example, the function

uC(x) =

η for x ∈ C ⊂ G, and η ≈ 0

1 for x /∈ C

allows all documents within the set C to be temporarily filtered out without remov-

ing them from the database (this could also be accomplished by an output filter of

course). As another, concrete example, u(x) could be a score based on the number

of postscript files referenced in document x. The effect is equivalent to sorting the

full output of the search engine by this score, without affecting the existing rankings

in cases of a tie. Some types of meta search engines can therefore be emulated.

We now leave the topic of weighting functions u, and briefly consider the effect of

changing ε in (6) and (7). Since Q(x, y) itself is the transition matrix for a Markov

chain (which “never gets bored”), it has a resolvent Rα (Meyn and Tweedie, 1993;

Revuz, 1984), which is a family of matrices such that

(10) Rα(x, y) ≡
∞∑

k=0

αkQk(x, y), αRα = βRβ+(α−β)RαRβ , 1 > α > β > 0,

where the second equation above is known as the resolvent equation. Comparing

with (7), it is clear that πε = εµR1−ε where we write πε to denote explicitly the

dependence of π on ε in (7). From the resolvent equation, we deduce the identities

δ(1− ε)πε = ε(1− δ)πδ + (δ − ε)Πε,δ, Πε,ε = πε − ε(1− ε)
dπε

dε
,

where we define Πε,δ ≡ δπεR1−δ ≡ επδR1−ε, i.e. a solution of (2) with µ in (6)

replaced by πδ. The measure Πε,δ can, by this definition, be associated with a

“bored web surfer who is aware of the search engine and uses it exclusively”, with

the implication that the above equations describe the extent of the bias introduced

in this simple model by the existence of the search engine.

From the resolvent equation, we deduced an analytic expression to link πε with

πδ. However, this isn’t particularly convenient for obtaining a direct qualitative

view of the PageRank family πε. In Figures 1, 2 and 3, we plot πδ versus πε for

several choices of ε and δ with the given dataset. In the plots, each point represents

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 7

Figure 1. Each plot shows log πδ (vertical coordinate) against

log πε (horizontal coordinate) for δ < ε = 0.5

a document in the dataset, with the horizontal coordinate given by log πε(x), and

the vertical coordinate given by log πδ(x). If a point is above the diagonal, it means

that πδ(x) > πε(x), and conversely.

3. More on perturbations

In this section, we discuss simple examples of additive perturbations to the tran-

sition dynamics Q, by utilising the properties of the resolvent, introduced in (10).

The topic of perturbations seems natural as a way to analyse the robustness of

8 L.A. BREYER

Figure 2. Each plot shows log πδ (vertical coordinate) against

log πε (horizontal coordinate) for δ < ε = 0.1

Figure 3. Each plot shows log πδ (vertical coordinate) against

log πε (horizontal coordinate) for δ < ε = 0.01

different page ranking algorithms, and as a way of constructing improvements. A

detailed exploration is however beyond the scope of this document.

Recall from Theorem 1 that the page ranking distribution πε, which solves both

(2) and (6), has the matrix analytic form

(11) πε = εµ ·R1−ε(Q), R1−ε(Q) =
∞∑

k=0

(1− ε)kQk,

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 9

for any 0 < ε < 1. Here the positive matrix Q is assumed to satisfy
∑

y Q(x, y) = 1

for all x ∈ G, although some results will hold if the condition is dropped. For any

perturbation matrix B(x, y) on G, the second resolvent equation (Hille and Phillips,

1957, Section 4.8, p.126) holds, provided the resolvents Rα(Q) and Rα(Q+B) both

exist (ie have absolutely convergent components):

(12) Rα(Q + B) = Rα(Q) + αRα(Q + B)BRα(Q), 0 < α < 1.

The following result is a straightforward application of this equation.

Proposition 2. Let θ be a probability distribution on G, and take 0 < δ < 1. Given

a transition matrix Q, let QB be defined by

(13) QB(x, y) = (1− δ)Q(x, y) + δθ(y).

Let πε,µ be a solution (probability measure) of (2) and (6), and similarly let πB
ε,µ

solve (2) and (6) with Q replaced by QB. We have

(14) πB
ε,µ = λπε+δ(1−ε),µ + (1− λ)πε+δ(1−ε),θ, λ = ε/(ε + δ(1− ε)).

Proof. In (12), let α = 1− ε, and multiply both sides of the equation by εµ on the

left. Using (11), we have

εµR1−ε(QB) = εµR1−ε

(
(1− δ)Q

)
+ (1− ε)εµR1−ε(QB)δ(1⊗ θ)R1−ε

(
(1− δ)Q

)
,

= εµR(1−ε)(1−δ)(Q) + δ(1− ε)εµR1−ε(QB)1 · θR(1−ε)(1−δ)(Q),

which is equivalent to (14), since εµR1−ε(QB)1 = 1. �

The perturbed transition matrix QB corresponds to a transition dynamic which

follows Q with probability (1− δ), and with probability δ resets the state indepen-

dently according to θ.

In a different direction, suppose that B commutes with Q. We can then obtain

a general perturbation formula for πB in terms of a simple family of page ranking

measures which generalise π.

Proposition 3. Suppose that QB = BQ, and define

QB = (1− δ)Q + δB, 0 < δ < 1,

10 L.A. BREYER

assuming that
∑

y Q(x, y) =
∑

y B(x, y) = 1 for all x. Let πB
ε,µ solve (2) and (6),

with Q replaced by QB. Then

πB
ε,µ = λ

∞∑
j=0

(1− λ)jξj+1
(1−ε),µBj , ξr

α,µ = (1− α)r
∞∑

n=0

(
n + r − 1

n

)
αnµQn,

where λ = ε/(1− (1− δ)(1− ε)).

Proof. From the second resolvent equation (Hille and Phillips,1957, Theorem 4.8.3):

(15)

Rα

(
γQ + (1− γ)B

)
= Rγα(Q)

{
I +

∞∑
j=1

(
α(1− γ)BRγα(Q)

)j
}

, 0 < α, γ < 1.

Since B commutes with Q, the sum can also be written

Rγα(Q)
∞∑

j=1

(α(1− γ)BRγα(Q)
)j

=
∞∑

j=1

αj(1− γ)j

[∞∑
k=0

(γα)kQk

]j+1

Bj

=
∞∑

j=1

αj(1− γ)j

[∞∑
n=0

(
n + j

n

)
(γα)nQn

]
Bj .

Using this in (15), we obtain the formula

(1−γα)Rα

(
γQ+(1−γ)B

)
=

∞∑
j=0

(α− γα

1− γα

)j
[
(1−γα)j+1

∞∑
n=0

(
n + j

n

)
(γα)nQn

]
Bj ,

and hence the result after setting α = 1− ε, γ = 1− δ, and multiplying both sides

by µ on the left. Note that ξr
α,µ is indeed a probability measure as the coefficient

of µQn is the probability mass of a negative binomial distribution. �

4. Modifying PageRank for page obsolescence

In this section, we describe the original motivation for the paper, a page ranking

scheme of the type (2) and (6) which penalizes web pages according to their age.

The standard PageRank measure defined in (1) handles all links emanating from

a web node in G equally. Thus the importance of a node is dependent solely on

the number and importance of nodes linking to it. This gives a static view of the

page ranking algorithm as well as the link graph, which fails to capture some of the

dynamic aspects inherent in the World Wide Web.

Among the interesting properties shared by all World Wide Web documents is

the creation/modification date. As this property is not directly referenced by the

PageRank definition (1), is not immediately obvious that πPR is, in fact, biased

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 11

Figure 4. Document numbers increase exponentially with the

date, but conditionally on the date, PageRank measure favours

older documents.

towards older web documents. An explanation is easily found: Since the World

Wide Web grows by aggregation, it follows that any new document must, if it

contains external links at all, link to already existing, hence older, documents.

The exception occurs when an older document is updated. Now PageRank favours

documents which are linked to by many others, hence which tend to be older.

For the purposes of this section, we shall define the date of a document (i.e. a node

in the web link graph) as its last modification or creation date. Assuming continuous

crawling of the World Wide Web, the date of a document can be approximated by

the earliest crawl date such that the contents haven’t changed since that date. This

is what we do for our dataset, where we take the minimum of the last modification

date (if it is recorded) and the crawl date. A small percentage of documents have

neither, and we set their date arbitrarily to zero.

The bias towards older documents can be observed in our dataset, which con-

tains 916, 428 documents with valid dates ranging (in days) from τmin = 4358 to

τmax = 8094. However, a naive plot of document rank π(x) against document

date τ(x) won’t exhibit the effect, because the number of documents with a given

date increases exponentially with the date, see Figure 4. Instead, we look at the

conditional page ranking distribution given the date,

π(x | t) =
π(x)1{τ(x)=t}∑

τ(y)=t π(y)
,

which can be estimated through simulation as described later in this paper. In

Figure 4, we plot for each document x an estimate of log πPR(x | τ) against τ = τ(x).

12 L.A. BREYER

Clearly, the conditional PageRank tends to be higher for older documents. A similar

effect is observed if we plot instead π(x)/#{x : τ(x) = t} versus t.

Independently of PageRank, age also affects the documents on the World Wide

Web in a negative way: Older documents are more likely to disappear or be

moved/modified in such a way as to be unrecognizable. We can discriminate against

older documents, while keeping the general flavour of PageRank if we calculate the

page ranking distribution πD, based on (2), (6) and

(16) QD(x, z) = C−1
λ (x)

∑
x→y

exp

[
−λ

(
τ(x)− τ(y)
τmax − τmin

)
+

]
δy(z),

where Cλ(x) is the normalizing constant such that
∑

y QD(x, y) = 1. If λ = 0 in

(16), we see that QD = QPR, and πD reduces to πPR (see Corollary 1). If λ > 0

however, we see that transitions from x to older documents (where τ(y) < τ(x))

are penalized, while transitions to newer documents are still chosen equally, as

with PageRank. Note that QD is not of the form Qu for some function u, hence

Proposition 1 does not apply here.

Figure 5. Each plot shows log πD (vertical coordinate) against

log πPR (horizontal coordinate) for ε = 0.01 and various λ

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 13

A detailed analysis of πD is beyond the scope of this paper, partly due to the

absence of a theoretical framework for meaningful comparisons with πPR. We show

here some simulation plots and discuss them very briefly.

Both Figures 5 and 6 show plots of log πD against log πPR for fixed values of ε

and a range of λ values.

It is noteworthy that the qualitative behaviour appears not to depend on ε, even

though πPR(0.01) and πPR(0.3) differ somewhat. This is borne out by other plots

not shown here. Examining the plots more closely, it is apparent that increasing

λ tends to reduce (i.e. send below the diagonal) the rank of a certain subset of

documents, with most of the others keeping their rank somewhat unchanged (i.e.

staying close to the diagonal). The limiting horizontal branch, which can be seen

in the last two plots of Figure 5 (λ ≥ 5), is hard to explain.

Figure 6. Each plot shows log πD (vertical coordinate) against

log πPR (horizontal coordinate) for ε = 0.3 and various λ

14 L.A. BREYER

5. Constructing the link graph

In this section, we describe the data structures and algorithms used to construct

an in-memory model of the link graph G. This model is used to run the various

Markov chains descripbed in this paper.

The dataset provided by Google, Inc., consists of a collection of 916, 428 doc-

uments in hypertext markup language format (html). Each document has a web

address (url) which is a string of the general form

[scheme:][//netloc][/path][?query][;parameters][#fragment],

where each element in brackets is optional, and each element in italics is a string

of ASCII characters (see RFC 2396). All links which appear in a document employ

urls to designate the targeted document. By decoding this string, and knowing the

url of the document on which it appears, we can deduce the targeted document’s

fully qualified url, and in particular whether or not this document exists in our

dataset, warranting a link in G.

Some documents have several urls pointing to them, this being due to web server

redirections. Links to documents not appearing in G (but existing on the Web) are

called dangling links, and as these do not appear in the formula (1), they must be

recognised as such in the dataset.

Capitalisation in urls is a source of problems. Some elements, such as the scheme,

are not case sensitive. The netloc element isn’t either, provided it contains a DNS

address. The path however can be case sensitive or not, depending upon the operat-

ing system installed on the file server. Moreover, most authors of web pages aren’t

aware of these difficulties, which compounds the effect. These aspects imply that it

is impossible to decide completely reliably if two urls refer to the same document,

so that any link graph G which we construct will necessarily be only approximately

correct. The convention we shall use is to make case sensitive comparisons for all

elements except scheme and netloc.

Besides the problem of redirections, there is a rare issue of consistency of the

dataset which we address as follows: whenever two physical documents have the

same url, we merge the two representations. Thus, instead of trying to decide

which of the two is the true document, we construct a representation containing

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 15

all links emanating from each constituent, etc. The consistency issue can occur

due to nonstandard server settings, for example if the default index.html file is

renamed. We use the convention that a url ending in a directory name refers to the

file index.html within that directory, although we cannot be certain.

The procedure to create the link graph G described here requires that each

individual document x ∈ G be associated with one or more url strings, which are

kept in memory during construction. After properly formatting and fully qualifying

the urls into a standard form (which tends to increase their relative sizes, but is

necessary for later reference), this means that on the order of 650 Mb of storage is

required for approximately 4 million document urls and link urls combined. The test

machine has only 256 Mb of memory, so it is worth considering ways of compressing

these requirements somewhat. In light of the true size of the Web, the amount of

compression achieved also has an impact on the scalability of future analyses with

larger datasets.

A second and related design decision concerns the number of passes through

the original data needed to build the graph. If we only store document urls in

memory, we need two passes through the dataset, first to build the nodes x ∈ G,

then to build the links x → y through comparisons with the urls in memory. This

requires an efficiently searchable data structure to store the strings, such as a hash

table. The supplied dataset has on average 12 links per document, 6 of which are

dangling. Alternatively, if we use a single pass through the dataset (reading the

dataset on disk is relatively slow), we need to keep both document urls and link urls

in memory. For the full dataset, this translates to approximately 4 million distinct

url strings.

The method we use here is to store the url strings in a trie, which allows us

to take advantage of the natural hierarchical structure of urls. For example, the

following urls all occur in the dataset:

• http://www.bu.edu/

• http://www.bu.edu/iscip/

• http://www.bu.edu/iscip/news.html

• http://www.bu.edu/iscip/perspective.html

• http://www.bu.edu/com/html/events.html

16 L.A. BREYER

• http://www.bu.edu/com/html/faculty1.html

It is clearly wasteful to store the common prefix for every url. The arborescence

in Figure 7 shows how a trie structure (Knuth, 1997, Vol. 3, Section 6.3) prevents

wasteful duplication. The arborescence itself can be easily stored in a linear struc-

ture (array) by using branch links as shown in Figure 8. The table of branch links

itself is taken as a hash table, which allows fast (O(1)) retrieval of every branch

link when needed.

http://www.bu.edu/

iscip/

news.html

perspective.html

com/html/ events.html

faculty1.html

Figure 7. Trie structure prevents duplication of common url prefixes.

To determine the existence of a particular url s within the trie, we start at the

root of the trie, and compare prefixes up to the first encountered branch. We then

compare the first character in each branch to determine which to follow, and repeat.

As each url string is composed of ASCII characters (128 exist in total), there can

be at most 128 branches for each character in our search string s, thus giving an

upper bound of 128 · lenght(s) for the number of comparisons required to find s,

regardless of the size of the trie. In practice, this will be considerably less.

In the linearised situation of Figure 8, each branch, here represented by a curved

arrow, gives rise to a single pair (k, v) stored in a hash table. The value k, which is

used as the key in this hash table, is the number of characters from the beginning

to the point where the arrow representing the branch originates from. The value v

is a pointer to the character which represents the destination of the arrow. Since

there are as many branches in the trie as there are distinct inserted url strings,

this number is also the required size of the branch hash table. The total storage

requirements are therefore given by the number of characters (one byte each) stored

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 17

in the trie plus eight bytes for every branch link (four bytes are needed to encode

a number up to 4 billion).

http://www.bu.edu/ iscip/ news.html perspective.html com/html/ events.html faculty1.html

Figure 8. Linearised trie. Each arrow is a branch link, with origin

k and destination v.

The reason we store the branches in a hash table is speed and memory savings.

Were we to embed the branches directly into the trie, we would have to reserve

at arbitrary locations enough space for a character pointer, wasting much memory.

On the other hand, each trie search requires tens of branch lookups, so an O(log N)

data structure such as a tree would be noticed, due to the large number of branches

(approximately 4 million) inserted.

A further (but smaller) memory saving is obtainable from noting another prop-

erty of url strings. Most such strings refer to html documents, which typically end

in the string .html or .htm. Since these suffixes occur at the end of the inserted

strings, they are not shared within the trie and take up much space. We therefore

encode common suffixes by a single non printable ASCII character, which further

reduces the size of the trie for our dataset by approximately 20 Mb.

A second, much smaller hash table is used to associate each document url string

in the trie with the constructed document node within the graph. This allows the

trie to be queried as to the existence of a particular document in the graph, and

is useful for building connections between the nodes. As the documents are read

from the dataset, a node’s to links (pointing to other nodes) are represented firstly

as character pointers to the end of the corresponding url string within the trie.

This is necessary since it is not known at that stage whether a linked to document

belongs to the dataset, or whether the link is dangling. Once the full dataset has

been processed, we pass a second time through the graph nodes, checking for each

link if the corresponding url in the trie is associated with a node, and if so convert

the character pointer into a proper node pointer.

18 L.A. BREYER

Again, this hash table is used instead of embedding the node pointers directly

in the trie, since the latter contains very many urls which aren’t associated with a

node in the graph.

Because the trie allows large memory savings, the final program can use a sin-

gle pass over the dataset, and stores both document and link urls in memory.

With 916, 428 documents and roughly 3 million unrelated link urls, the storage

requirements are only about 75 Mb, as opposed to theoretically 650 Mb for the full

uncompressed set of standardised strings. This is quite sufficient for our purposes.

The storage requirements for the web graph G itself vary depending upon the

amount and type of information retained. Here, we make no particular effort to

keep the overall size of the graph small, preferring to store extra information so as to

keep simulations fast and simple to program. For each document (ie node x ∈ G),

we store a list of links to other documents y ∈ G (approximately 6.5 per node) as

well as the list of documents in G linking to x (approximately 6.5 per node also,

by coincidence). Since a single pass through the dataset doesn’t allow us to build

the links between the nodes directly (for we don’t know until the end if a linked to

document y belongs to our dataset or not), we at first make each document’s links

point to their own urls as stored in the trie. Whenever a new document’s url is

inserted in the trie, we give it a pointer to the actual node y ∈ G. After the full

dataset was read in, a second pass through the nodes in memory allows us to link

the nodes directly, bypassing the trie.

Table 1 summarises the actual sizes encountered in the dataset. The parity

between average fromlinks and average tolinks seems to be an artifact of the dataset.

6. Simulating page ranking schemes

In this section, we consider again the case when π is of the form (2), with P

satisfying (6). By Theorem 1, we have the formula (7), which shows that we can

obtain a sample from π by first choosing a document from the distribution µ, and

then applying T transitions with probabilities Q(x, y), where T is geometrically

distributed with mean ε−1. This approach to simulating π is particularly useful for

parallel processing, since each sample from π can be generated independently, thus

minimising the communication needed between processors. To obtain n samples

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 19

Number of documents (size of G) 916,428

Number of unique url strings inserted in trie 4,069,633

Total size (characters) of standardised url strings 668,245,361

Memory needed for strings in trie (bytes) 43,796,267

Memory needed for branch hash table (bytes) 32,557,056

Memory needed for (url → node) pointer hash table (bytes) 7,451,984

Minimum size (bytes) of each web node (excl. *link pointers) 32

Average number of tolinks for each web node 6.58442

Average number of fromlinks for each web node 6.68272

Average number of dangling tolinks for each web node 5.58942

Total memory used by G (bytes) 98,448,388
Table 1. Data structure statistics for Google’s dataset

from π, we would first generate n independent random variables (nodes/documents)

distributed uniformly on the link graph G, and then evolve them simultaneously

or sequentially. This approach is more efficient in traversing the link graph G.

Moreover, it can be readily parallelized, see Section 7.

For completeness, let us mention that, besides simulating from π, it is also quite

easy to obtain random samples from the measures Πε,δ described at the end of

Section 2. As above, we begin by generating a πε random variable. This however

now takes the place of µ as a starting point, and we generate another variable

T ′, which is geometrically distributed with mean δ−1. We then perform T ′ extra

transitions according to Q.

Finally, we mention that the ability to produce i.i.d. samples from π makes

the construction of confidence intervals for π(x) trivial. Suppose that n samples

Z1, . . . , Zn from π are available. For each x ∈ G, the occupation number kn = #{t :

Zt = x} is binomially distributed, with success probability π(x). In particular,

(17) P

(
kn

n
− 1.96

n

√
kn(n− kn)

n
< π(x) <

kn

n
+

1.96
n

√
kn(n− kk)

n

)
≈ 0.95.

We can also obtain absolute (but very loose) bounds on the number n of samples

needed to achieve a fixed relative error for each estimated π(x). This uses the

universal lower bound π(x) ≥ εµ(y) for all x ∈ G, which comes from (6). Combining

20 L.A. BREYER

this with (17) in the case of PageRank, we write

P

(∣∣∣∣ (kn/n)− πPR(ε)(x)
πPR(ε)(x)

∣∣∣∣ ≤ 3.92 |G|
ε
√

n

√
kn

n

(
1− kn

n

))
≈ 0.95,

and since kn ≤ n, this gives P
(
|relative error| ≤ 3.92 |G| /4ε

√
n
)
≈ 0.95. This

bound is unsatisfactory for large graphs G since it requires O(|G|2) samples to

guarantee a (universally small) relative error. Tighter bounds can be expected to

depend upon the actual geometry of G.

In contrast to the preceding statements, the situation becomes theoretically more

interesting if, as is suggested by (5), we attempt to compute π only on a relatively

small subset S of G, say S = {x : ω ∈ x}. Due to the typically very small magni-

tude of π(x) when |G| is large (typically less than |G|−1), the occupation numbers

kn include a very large relative error. Essentially, the overwhelming majority of

samples fall outside of S, while only the samples falling in S are informative (about

π restricted to S). To solve this problem, we can try to sample directly from

π|S(x) = π(S)−1π(x)1(x∈S), the conditional distribution of π on S.

The simplest (rejection sampling) technique consists in sampling Z1, . . . , Zn from

π as explained earlier, and then throwing away all samples which don’t end up in

S. The usefulness of this scheme hinges on being able to limit dramatically the

wasted computations, that is, to decide early if a sample will end up in S or not.

This is possible for certain forms of the matrix Q, including QPR.

To see how this works, consider that each random variable Zt requires T (t)

transition steps Z0
t , Z1

t , . . . , Z
T (t)
t ≡ Zt, where Z0

t ∼ µ and Zs+1
t ∼ Q(Zs

t , ·) for

s = 0, . . . , T (t)− 1. Crucially, the number of steps T (t) is independent of the path

Z0
t , . . . , Z

T (t)
t . Let S(0) = S, and define

(18) S(−(t + 1)) = {x ∈ G : x → y for some y ∈ S(−t)}, t = 0, 1, 2, . . . ,

then a necessary condition for accepting Zt ∈ S, given that T (t) = k say, is that

Z0
t ∈ S(−k). Provided that the sets S(−k) are small compared to G, the following

will be an improvement over naive rejection sampling:

Theorem 2. Let Q satisfy Q(x, y) > 0 if and only if x → y, and
∑

y Q(x, y) = 1

for all x. The following procedure yields a sample from π|S: Let k > 0 be a fixed

constant and compute the sets S(−1), S(−2), . . . , S(−k) as in (18).

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 21

1 Let T be a random variable with distribution

P(T = t) =

ε(1− ε)tµ(S(−t))/µ(G) if t ≤ k,

ε(1− ε)t otherwise.

2 Independently, set Z0 ∼ µ|S(−T) if T ≤ k, or Z0 ∼ µ if T > k, and for

each t ≤ T , put Zt ∼ Q(Zt−1, ·). If Zt /∈ S(−T + t) for some t ≤ T , we

reject the proposal and begin anew at step 1. If all Zt ∈ S(−T + t), then

the variable ZT is a sample from π|S, and we stop.

Proof. To obtain a sample from π|S , it suffices to sample from π repeatedly until the

result falls into S. Using the definition (18), we have the identity 1{S(−j)}(x)Qj(x, y) =

Qj(x, y) for all y ∈ S. Consequently, from (7) and for y ∈ S, the probability density

π(y) can be written

π(y) = ε
∞∑

j=0

(1− ε)j
∑
x∈G

(
µ(x)/µ(G)

)
Qj(x, y) =

ε
k∑

j=0

(1− ε)j
(
µ(S(−j))/µ(G)

)∑
x∈G

(
µ(x)1{S(−j)}(x)/µ(S(−j))

)
Qj(x, y)

+ ε

∞∑
j=0

(1− ε)j
∑
x∈G

(
µ(x)/µ(G)

)
Qj(x, y).

The right hand side is simulated directly by steps 1 and 2, while the event

{Zt ∈ S(−T + t) for all t ≤ T}

is clearly equivalent to {ZT ∈ S}. �

For best results, we should choose k such that the probability mass represented

by (p1, . . . , pk), where pj = ε(1 − ε)jµ(S(−j))/µ(G), is close to one. This is of

course highly dependent on the geometry of the link graph G and the size of S.

Implementing this algorithm requires the construction and representation of the

sets S(−j). This can be handled efficiently with a bit field associated to each node

x ∈ G. Suppose we take k = 16, then two bytes are needed for each node, and

the membership of x in S(−j) is signalled by setting the j-th bit to one (otherwise

leaving at zero). Since we already store fromlinks as well as tolinks, the construction

of the sets S(−j) is easy and requires at the most k passes through the whole graph

G.

22 L.A. BREYER

We note also that for reasons of efficiency in traversing the link graph G, the

samples from π|S should not be generated sequentially. Instead, it is better to

build a large number N > n of candidate proposals Z0
1 , . . . , Z0

N and evolve these

simultaneously, discarding the failing candidates.

Informal simulations suggest an efficiency gain in the number of conditional

samples produced ranging between 1.5 and 3 times, compared to the standard

(unconditional) sampling scheme, depending upon the set S.

7. Distributed simulations

As the statements in the introduction made clear, while the dataset provided

is too large to be conveniently manipulated with most current analysis tools on

commodity computers, it is nonetheless very small compared to the true size of the

World Wide Web. Here we propose a brief analysis of the prospects for distributing

the simulations on a cluster of computers. The code for this has been implemented

by the author, and uses the Parallel Virtual Machine framework (Geist et al., 1994).

Distributed web link graph. There is no conceptual difficulty in distributing

a large dataset of web documents onto several machines. If |G| is the total number

of web documents, J is the number of separate (identical) computers, each of these

will require enough memory to store |G| /J documents, say. Taking the memory

requirements outlined in Section 5 as approximately 200 Mb for one million doc-

uments, we expect that a machine with up to 4 Gb of RAM can accommodate

up to 20 million documents. A set of 3 billion documents would require 150 such

machines.

The memory requirements for a single machine include the need to store the trie

of urls: In building a distributed web link graph G = G1∪· · ·∪GJ , we want to take

into account the links whose origin and destination belong on different machines.

On each machine a, the nodes x ∈ Ga are labelled by a unique integer identifier.

However, the raw dataset represents links by their url addresses, so these need to

be used for the construction of links between machines.

The construction of the distributed link graph proceeds in two stages. In the

first stage, each machine a builds interconnected nodes for all the documents it

receives, and writes a list of (standardised) urls for all the nodes it owns into a file.

In the second stage, this file is read by all other machines b1, . . . , bJ−1, which build

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 23

leaf nodes for each url which also exists in their own trie. Since the trie in machine

b contains a url s if and only if s is either the address of a node in Gb or a node

linked by a node in Gb, this procedure builds one leaf node for each connection to

some other machine, while dangling links are ignored. A leaf node contains much

less information than a full document node. It is there only as a proxy, to reduce

the communication requirements between machines during a simulation.

The full cost of building the distributed web graph is O(|G|) for each machine,

or O(J |G|) in total. This is due to the sparseness of the incidence matrix of G. For

example, each node in the dataset links to 12 documents on average, six of which

are dangling. The first stage passes through the dataset once to build the nodes,

and once to build the internal connections, obtaining Ga. In the second stage, each

machine b 6= a reads J − 1 files, containing |G| /J urls, in a single pass to obtain

the leaf nodes. These are connected to the graph Gb in a single pass.

Distributed sampling. We now discuss the simulation of a page ranking

scheme π satisfying (2) and (6). Let n be the total number of samples required. We

shall only discuss simulating the full π distribution, not a restricted version π|S .

Initially, there are n active particles, chosen independently according to µ. So each

particle moves independently, performing a geometric number of moves with suc-

cess probability ε. Afterwards, it is removed, and its last location x is recorded, by

incrementing the occupation count associated with the node x. The total number

of transitions required for the full calculation has a negative binomial distribution

with success probability ε and n required successes. This means an average n/ε

transitions with a standard deviation of
√

n(1− ε)/ε.

In the distributed case, we must also take into account transitions in which a

particle crosses from machine a to another machine b. This costs a message from a

to b, but can be amortised by batching. The idea is that machine a should evolve

all particles it owns until it cannot continue. Each particle performs its transitions

on Ga according to Q until it either stops (with probability ε) or it reaches a leaf

node. Stopped particles are recorded by incrementing the occupation counts for the

relevant nodes. Occupied leaf nodes are grouped by destination machine, which is

sent a single message consisting of the number and location of relevant particles.

A maximum of J messages is sent during this propagation step.

24 L.A. BREYER

On the receiving side, the propagated particles are placed on the relevant nodes

and a new partial simulation is done. Due to the Markov property, only the current

locations of the particles are needed for the simulation. Also, the messages received

can be processed in any order, and even together by superposition of the particle

counts. The full simulation stops when all particles have been removed.

It is easy to see that the simulation must in fact stop, since at the end of each

partial simulation, the number of particles on the leaf nodes of a is less than or

equal to the number of particles on Ga at the beginning of the partial simulation.

With positive probability, this is a strict inequality. Thus, the total number of

propagated particles is monotone decreasing. Once it reaches zero, the simulation

must stop.

The total number of messages sent is of interest because the cost of each message

is an order of magnitude larger than a single transition, although the individual

messages tend to become smaller over the course of the simulation.

A simple worst case bound can be worked out as follows: A propagation event

is needed whenever there is a transition from one machine to another. Each such

event sends at most J messages from each computer, or a maximum of J2 messages

in total. The number of propagation events is less than or equal to the number L of

transitions of the longest lived particle. Since the k-th particle makes a geometric

number T (k) of transitions, independently of the others, we must have

P(L ≤ k) = P
(
max{T (1), . . . , T (n)} ≤ k

)
= [1− (1− ε)k]n,

and consequently an average worst case bound for the total number of messages

transmitted within the computing cluster is J2E[L] = J2
∑∞

k=0 P(L > k). Note

that the more informative average case bounds are difficult to obtain analytically,

as they would require assumptions on the geometry of G and the way the data is

distributed on the various machines. Table 2 shows a single distributed simulation

run with two machines.

References

[1] Berners-Lee, T., Fielding, R. and Masinter, L. (1998) Uniform Resource Identifiers (URI):

Generic Syntax. IETF RFC 2396.

[2] Breyer, L.A. and Roberts, G.O. (2001) Catalytic perfect simulation Methodology and com-

puting in applied probability.

MARKOVIAN PAGE RANKING DISTRIBUTIONS: SOME THEORY AND SIMULATIONS 25

Machine A Machine B

Particles Leaf nodes Particles Leaf nodes

46,495,390 - 53504610 -

27,169,094 282,006 23,850,799 302,294

12,196,554 253,010 14,027,057 272,527

7,171,160 233,537 6,297,161 244,963

3,215,618 204,828 3,706,939 221,836

1,890,765 181,620 1,660,393 184,284

846,022 142,625 947,435 155,782

496,777 115,949 436,892 113,198

222,822 78,110 256,401 86,834

130,264 57,287 114,774 53,832

58,181 33,236 67,227 37,786

34,313 22,310 29,983 20,544

15,254 11,602 17,707 13,382

9,051 7,413 7,843 6,625

4,035 3,545 4,661 4,094

2,352 2,154 2,008 1,845

1,047 1,004 1,189 1,125

576 560 252 509

266 260 295 293

140 140 145 142

64 63 67 67

36 36 37 37

14 14 19 19

12 12 8 8

4 4 8 8

5 5 3 3

1 1 4 4

3 3 1 1

- - 1 1
Table 2. A distributed simulation run with two machines pro-

ducing 100, 000, 000 samples of PageRank with ε = 0.1.

26 L.A. BREYER

[3] Brin, S. and Page, L. (1998) The anatomy of a large-scale hypertextual web search engine.

7th International World Wide Web Conference, Brisbane, Australia, 1998.

[4] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. (1994)

PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel

Computing. MIT Press.

[5] Hille, E. and Phillips, R.S. (1957) Functional Analysis and Semi-groups. AMS.

[6] Kleinberg, J. (1999) Authoritative Sources In A Hyperlinked Environment. Journal of the

ACM 46.

[7] Knuth, D. (1997) The Art Of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley.

[8] Labovitz, C. Ahuja, A. and Bailey, M. (2001) Shining Light On Dark Internet Address

Space. Arbor Networks, Inc. Technical Report.

http://research.arbornetworks.com/up media/up files/dark address space.pdf

[9] Meyn, S.P. and Tweedie, R.L. (1993) Markov Chains And Stochastic Stability. Springer.

[10] Revuz, D. (1984) Markov Chains. North-Holland.

[11] Sparck Jones, K., Walker, S. and Robertson, S.E. (1998) A probabilistic model of informa-

tion retrieval: Development and status. Tech. Rep. 446, Cambridge University Computer

Laboratory.

[12] Wilson, D. (2000) How to couple from the past using a read-once source of randomness.

Random Structures and Algorithms Vol. 16, Number 1, pp.85–113.

E-mail address: laird@lbreyer.com

