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Abstract. Given a Markov chain, a stochastic flow which simultaneously con-

structs sample paths started at each possible initial value can be constructed

as a composition of random fields. In this paper, we describe a method for

coupling flows by modifying an arbitrary field (consistent with the Markov

chain of interest) by an independence Metropolis Hastings iteration. We show

that the resulting stochastic flow has many desirable coalescence properties,

regardless of the form of the original flow.

1. Introduction

In this note, we describe a novel approach to the problem of coupling random

fields, and by extension, Markov processes. The problem setting is as follows:

Consider a probability space (Ω,F ,P), upon which is defined a family
(
X(z) :

z ∈ Z
)

of random variables (called a random field), Z being some index set and

each variable X(z) taking values in some common measurable space (E, E). Under

measurability conditions, the marginal distributions of the field are fully described

by a kernel P : Z × E → [0, 1], in the sense that

P

(
X(z) ∈ dy

)
= P (z, dy), z ∈ Z.(1)

Conversely, if we start with a kernel P and take (1) as a hypothesis, we can construct

some probability space (Ω,F ,P) and a family X(z) : Ω→ E (z ∈ Z) such that (1)

holds. Such a probability is often called a coupling, at least when Z consists of two

points only. The choices for P are limitless, and it therefore becomes interesting to

ask whether a probability space and a family X =
(
X(z) : z ∈ Z

)
can be constructed

which additionally satisfy some previously agreed upon condition.
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The case |Z| = 2. When the index set Z consists of only two (distinct) points,

the problem we shall deal with can be phrased as follows: given two marginal

distributions P1(dy) and P2(dy) on a common space E, find a probability space

(Ω,F ,P) and a realization (X1, X2) such that

P(X1 = X2) > 0, X1 ∼ P1(·), X2 ∼ P2(·).(2)

This problem can be solved (Lindvall, 1992) if and only if there exists some non-

trivial measure ν(·) on E such that both P1 ≥ ν and P2 ≥ ν, in which case there

exists a maximal probability P satisfying (2) on a canonical probability space Ω.

This result has been the basis for a very successful method, originally proposed by

Nummelin, for coupling Markov chains (Meyn and Tweedie, 1993).

The case |Z| > 2. When the indexing set Z consists of more than two distinct

points, we must replace (2) by a more suitable requirement on P. There is no

universal definition extending (2), but the following seems natural.

Definition 1. Let Z be some index set, and consider a kernel P : Z × E → [0, 1]

of probability measures on some measurable space (E, E). We say that a family(
X(z) : z ∈ Z

)
of random variables with values in E, defined on some probability

space (Ω,F ,P) is a finite (resp. discrete) coupling of the field determined by P if

both (1) holds and

P

(
z 7→ X(z) has a finite [resp. discrete] range in E

)
= 1.

One aim will be to find conditions on the kernel P such that there exists a

finitely (resp. discretely) coupled field. Interest in finite couplings is due to the

recent developments in the literature on Perfect Simulation, which was spawned by

the seminal work of Propp and Wilson (1995). The proof of existence we offer is

constructive, and susceptible to be implemented on a computer.

The construction of Markov chains for simulation purposes is usually accom-

plished by the use of a stochastive recursive representation of the Markov chain

transitions (Borovkov and Foss, 1992). This in turn implies a succession of stochas-

tic fields, mapping at each simulation epoch the current state z of the chain into its

subsequent value X(z). On composition of these fields, we obtain a stochastic flow

describing the simultaneous dynamics of the chain from all possible initial states.
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It is of interest (especially in the fast growing area of perfect simulation) to

construct this flow in such a way as to force coalescence of chains started from all

possible initial states. Unfortunately, many natural stochastic recursive construc-

tions do not lead to this, and it would be desirable to exhibit a general recipe for the

modification of an arbitrary stochastic flow (consistent with this particular Markov

chain dynamic) in order to guarantee the desired coalescence property. This is the

motivation behind the present paper.

Our approach will be to modify the individual component fields of an existing

flow, and recombine these new fields into a flow which has improved coalescence

properties. We will use a method of modification based on the independence sam-

pler (as commonly used in MCMC). Our first two main results, Theorems 2 and

5 deal with the modified fields themselves, showing that under suitable uniform

ergodicity assumptions, the fields, X(z), can be constructed so as to have finite

image with arbitrarily high probability (Theorem 2) and with probability 1 by a

suitable perfect simulation construction (Theorem 5).

Theorem 6 and Theorem 8 deal with the whole flow as constructed from the

modified fields, X(1)(z), X(2)(z), ..., say. Theorem 6 ensures the coupling of chains

started at any two arbitrary initial values. Theorem 8 extends this result to an arbi-

trary collection of starting values. Finally in Proposition 9, we focus on the problem

of constructing perfect simulation algorithms for Metropolis Hastings chains. These

algorithms are not covered by our previous results, although their specific struc-

ture allows specialised results to be proved. Examples include the random walk

Metropolis algorithm and the Langevin algorithm.

2. A Markov chain on Field Space

The construction of the finitely (resp. discretely) coupled field will be accom-

plished by applying ideas originally devised by Propp and Wilson (1995) to a

Metropolis-Hastings type chain whose states are represented by candidate fields.

The successively produced fields in this chain will have progressively “smaller”

ranges until such time as only finite range realizations of the field are produced.

This will a.s. occur after a finite number of iterations, uniformly fast in the “seed”

field. By the technique of “Coupling From The Past” we generate from this chain

a finitely coupled field.



4 L.A. BREYER AND G.O. ROBERTS

We proceed to set up some notation, and describe the transitions of the above

mentioned Markov chain. Let (E, E , µ) be a σ-finite measure space, Z a topological

space. We shall denote by F(Z;E) the space of Borel measurable functions of Z

into E. This will be thought of as the state space for a Markov chain Xn defined

below.

We also suppose given a probability kernel P (z, dy) = p(z, y)µ(dy) of Z into E,

absolutely continuous with respect to µ. The existence of the density p(z, y) here

is mainly a matter of convenience, and can be dispensed with at the cost of small

changes in the theory below.

For the construction of our Markov chain(s), we shall need an appropriate prob-

ability space (Ω,F), which we now describe. Take Ω = F(Z;E) and F to be the

σ-algebra generated by the function evaluations z 7→ ω(z), ω ∈ Ω. Define also

the set Π of probability measures on (Ω,F) which prescribe the marginals of the

canonical random variable:

Π =
{
P ∈ P(Ω) : P

(
ω : ω(z) ∈ A

)
= P (z,A) for all z ∈ Z,A ∈ B(E)

}
.(3)

Note that Π is nonempty, since we can always take the product measure P =⊗
z P (z, ·) ∈ Π. However, in the interests of readability, given a random variable

X : Ω→ F(Z;E), we shall often write X ∈ Π instead of the more cumbersome “the

law of X belongs to Π”.

We are now ready to define our Markov chain. In general, we shall need a

family Θz(x, dy) of probability kernels satisfying Θz(x, ·)� P (x, ·) for each z ∈ Z;

These will represent “proposals”. We suppose here also the existence of a density,

Θz(x, dy) = θz(x, y)µ(dy).

To define the Markov chain (Xn) we take X0 ∈ Π (“any random variable X0

whose law belongs to Π”), and then use induction. Given Xn =
(
Xn(z) : z ∈ Z

)
,

let Φz ∼ θz(Xn(z), ·)µ(·), and put Xn+1 =
(
Xn+1(z) : z ∈ Z

)
where

Xn+1(z) =

Φz if p(z,Φz)θz
(
Φz,Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θz
(
Xn(z),Φz

)
Xn(z) otherwise.

(4)

Here ξ ∼ U [0, 1] independently of Xn.

If we fix z ∈ Z in the above, it is immediately seen that the process n 7→ Xn(z)

is a Metropolis-Hastings chain with stationary distribution P (z, ·) and proposal
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kernel Θz(x, dy). Since moreover by assumption X0(z) ∼ p(z, ·)µ(·), one checks

immediately (or see Roberts and Smith, 1993) that

P

(
Xn(z) ∈ dy

)
= p(z, y)µ(dy), n > 0, i.e. Xn ∈ Π.(5)

However, when viewed as a family indexed by z, the chains X ·(z) are not indepen-

dent as z varies throughout Z, since we reuse the same random number ξ.

In the examples below, we describe some choices of the kernel density θz(x, y)

which guarantee that, for sufficiently large (but finite) n, the realization z 7→ Xn(z)

a.s. has finite range. None of the choices we list claim to be “optimal”.

Example 1. The simplest example of such a chain is arguably obtained if we

take θz(x, y) ≡ θ(y), a function of y alone. We call this the Simple Field Coupler.

For this choice, the formula (4) simplifies to

Xn+1(z) =

Φ ∼ θ(·)µ(·) if p(z,Φ)θ
(
Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θ(Φ)

Xn(z) otherwise.
(6)

Note first that if z 7→ Xk(z) has finite range, then every subsequent function

z 7→ Xk+`(z) will have finite range also. Thus the set of states in F(Z;E) with

finite range forms an absorbing set for any chain defined by (6). Let us now show

that this chain Xn indeed evolves towards a state with finite range. We shall explain

in the next section how to generate a finitely coupled field using a perfect simulation

technique.

Recall that a subset C ⊂ Z is called 1-small (Roberts and Rosenthal, 1996) for

the kernel P (x, dy) on E if there exists a probability density ν and a constant ε > 0

such that

inf
x∈C

p(x, y)µ(dy) ≥ εν(y)µ(dy).(7)

Theorem 2. Suppose that Z can be entirely covered by a finite union of 1-small

sets C1, . . . , CN , and suppose we can choose a probability density θ in such a way

that

εiνi(·) ≤ inf
z∈Ci

p(z, ·) ≤ sup
z∈Ci

p(z, ·) ≤ γiθ(·), i = 1, . . . , N(8)



6 L.A. BREYER AND G.O. ROBERTS

for positive numbers γ1, . . . , γN . If we define a Markov chain Xn on Π by the

prescription (6), then

P

(
Xn has finite range eventually

)
= 1.

Proof. Clearly from (6), if z is fixed the process n 7→ Xn(z) is a Metropolis-Hastings

Markov chain on E (an Independence Sampler, in fact), with stationary distribution

p(z, ·)µ(·). Therefore we certainly have (5), since X0(z) is already stationary. Now

for every z ∈ Z, the chain n→ Xn(z) must almost certainly move eventually. This

will happen the first time from (6) at time n if and only if(
p(z,Φ)θ

(
Xn(z)

))
> ξ ·

(
p
(
z,Xn(z)

)
θ(Φ)

)
.(9)

By (7) and (8), if z ∈ Ck, the event (9) contains the event

εkνk(Φ) > γkξ θ(Φ),(10)

which will occur eventually for some pair (Φ, ξ) since the pairs are independent, by

the Borel-Cantelli lemma. When it occurs at time nk say, all Markov chains Xnk(z)

for z ∈ Ck will accept the same jump to Φ, reducing the range of z 7→ Xnk(z) on

Ck to a single point. Note that after this common jump, the range over Ck is likely

to break into more than one point, but never more than a finite number at each

iteration. This analysis is valid on each of the small sets C1, . . . , CN which cover Z,

and another application of the Borel-Cantelli lemma now shows that each of these

sets must experience a common jump within a finite time τ = max{n1, . . . , nN},

beyond which the realization Xτ+n must always have a finite range.

It is clear that the choice of proposal Φ will influence the acceptance rate of the

algorithm. For any given z0 ∈ Z, we can judiciously adapt the proposal density θ(·)

to the target density p(z0, ·), but this will be useless if the density p(z, ·) varies highly

as a function of z. This difficulty can be addressed very simply by implementing

an auxiliary variable which can be used to tune the proposal θ. The next example

shows one way to do this. It will be called the Independence Field Coupler.

The Simple Field Coupler does not usually generate finitely coupled random

fields in a fixed, finite number of iterations n say, if the “seed” field X0 is not

already finitely coupled. To state an analogy with the behaviour of ergodic Markov

chains, we make the following definition:
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Definition 3. A random field X = (X(z) : z ∈ Z) is called finitely coupled within

ε > 0 if

P

(
z 7→ X(z) has finite range

)
≥ 1− ε.

With this definition, we can paraphrase Theorem 2 as follows: For each ε > 0,

there exists n such that Xn is finitely coupled within ε. It is not true that Xn

is finitely coupled (within ε = 0) for any n. Thus, given a realization X0 of a

seed field, we can never be certain that the realization Xn generated by the Simple

Field Coupler has finite range. We shall construct a finitely coupled field X by a

perfect simulation technique in the next section. For practical implementation of

this technique, it is not even necessary to be able to generate an initial field X0,

since its shape over the small set Ck is completely forgotten once the event (10)

occurs.

The bounds (8) are not needed to implement the Simple Field Coupler. However,

if they are available, we can get an estimate of the speed of convergence to a finitely

coupled field within ε > 0. By the proof of Theorem 2, the realization Xn has finite

range as soon as the event (10) has occurred for each k = 1, · · · , N . If we denote

by Tk the first hitting time of the set {(y, x) : εkνk(y) > γkxθ(y)} by the IID series

(Φ(n), ξ(n)), we have

P

(
Xn has finite range

)
≥ P

(
max(T1, . . . , TN ) ≤ n

)
,

and this is independent of X0. This bound can be explicitly computed in particular

cases.

If Z is only covered by a countable collection of 1-small sets, we can still run

the algorithm (6), but the realization Xn will generally not have discrete range in

a finite time.

We end our description of the properties of the Simple Field Coupler with some

comments about the assumptions of Theorem 2. Let us suppose that Z = E, so

that we may think of the kernel P as the transition function of a Markov chain

with state space E.

It is a fairly easy exercise (left to the reader) to show that coverage of E by

a finite number of 1-small sets and irreducibility implies that the whole set E is
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petite, and aperiodicity then gives the whole set E as small. This last statement

implies that P is uniformly ergodic.

It is therefore of interest to know if the converse holds. Unfortunately, this case

is not so straightforward. Indeed, if P is uniformly ergodic, it does not follow that

E can be covered by a finite, even countable collection of 1-small sets.

As a counterexample, consider the Random Scan Gibbs Sampler with uniform

target on E = [0, 1]× [0, 1]. Here the kernel P is given explicitly by

P (x1, x2; dy1 × dy2) =
1
2
(
δx1(dy1)dy2 + δx2(dy2)dy1

)
.

Since for (x1, x2) 6= (x′1, x
′
2) ∈ [0, 1] × [0, 1], P (x1, x2; ·) and P (x′1, x

′
2; ·) are mu-

tually singular measures unless x1 = x′1 or x2 = x′2, it is impossible to partition E

into even a countable collection of 1-small sets. However, E is still small (hence P

is uniformly ergodic), for in two steps, every part of the state space can be reached:

P 2(x1, x2; dy1 × dy2) ≥ 1
2
dy1 × dy2 = εν(dy1 × dy2).

In this counterexample, P did not have a density with respect to some σ-finite

product measure on E. However, the random scan Gibbs sampler on a discrete

state space E = Z
2 say does have a joint density p(x, y) and still there is only a

countable covering by 1-small sets. Note that with a strictly positive continuous

density and a locally compact state space E, there always is at least a countable

covering by 1-small sets (see Corollary below).

Intuitively, what is needed for a finite covering by 1-small sets is that the chain be

able to do large jumps in the state space. We offer the following sufficient condition

(which implies that the whole state space E is 1-small):

Corollary 4. Suppose that P (x, dy) has a strictly positive continuous density with

respect to some σ-finite reference probability µ on E. If Z is compact, or Z is only

locally compact and the limit p(∞, y) := limz→∞ p(z, y) > 0 exists and defines a

probability density, then

P

(
Xn has finite range in finite time

)
= 1.

Proof. If Z is locally compact, we add a point at infinity, making it compact.

Thus we can always assume that Z is compact. Now by the strict positivity of

the density p(x, y) the sets Un = {(z, y) : p(z, y) ∈ (1/n, 2/n)} entirely cover the
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compact set Z × Z. Hence there exists a finite subcovering Un1 , . . . , Unk say, and

the sets Cj = {z : (z, y) ∈ Unj} for j = 1, . . . , k are 1-small and cover Z:

P (z, dy) = p(z, y)µ(dy) ≥ 1
n

1Unj (y)µ(dy)

= εjνj(dy) if z ∈ Cj , j = 1, . . . , k.

To illustrate the Corollary, we suppose that P is the transition kernel associated

with the random field on Z = E = R given by

X0(z) = z + σ2(z)π′(z)/2π(z) + σ(z)W, W ∼ N (0, 1),

where we specify π and σ as follows: Let π(x) be some function such that π(x) ∼

exp(−α |x|β) as |x| → ∞, where α and β are strictly positive real numbers. Taking

any sequence γs ≥ 0 such that γs + β > 2 for all s, let σ satisfy

σ2(x)/(− log π(x))γs/β → 1 as |x| → ∞.

It is shown in (Stramer and Tweedie, 1997) that the kernel P associated with

the field X0 is uniformly ergodic, and it is left to the reader to check that the

assumptions of the corollary above are verified. Thus Theorem 2 applies to the

“seed” field X0.

Example 2. In this example, we present a version of the chain (4) which al-

lows a range of proposal distributions, thereby taking the shape of p(z, ·) better

into account. Referring back to (4), we suppose given a family θz(y) of proposal

distributions. Typical choices of θz(·) would be “close” to p(z, ·). We will need a

selection mechanism, to decide which distribution θz0 is to be used at every step

of the algorithm. The simplest choice is to take z0 distributed independently on

Z according to some distribution η(·), perhaps assigning higher weight to highly

variable or otherwise difficult regions of the field. We call Independence Field Cou-

pler the following Markov chain (Xn) on F(Z;E): Given Xn, draw independently

Y (n+1) := Y ∼ η(·) and set

Xn+1(z) =

ΦY ∼ θY (·)µ(·) if p(z,ΦY )θY
(
Xn(z)

)
> ξ · p

(
z,Xn(z)

)
θY (ΦY ),

Xn(z) otherwise.

(11)
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Note that we can think of the object
(
Y (n),Xn(z) : z ∈ Z

)
as a new random

field, where the index set is now Z ∪ {z0} for some isolated point z0 /∈ Z, and

Xn(z0) := Y (n). With this notation, we can fit the rule (11) in the framework (4)

(exercise for the reader).

The auxiliary variables Y (n) are IID, and given Xn ∈ Π (inductive hypothesis),

we also have

P

(
Xn+1(z) ∈ dx

)
=
∫
P

(
Xn+1(z) ∈ dx |Y = y

)
η(dy)

=
∫
p(z, x)µ(dx)η(dy), using (5)

= p(z, x)µ(dx),

since if Y = y is given, we just have the previous Simple Field Coupler (6) with

θ(·) = θy(·). Thus clearly Xn+1 ∈ Π if Xn ∈ Π. We can now repeat the arguments

of the previous example, yielding identical theorems for this new Field Coupler if

we simply replace (8) with the generalization

εiνi(·) ≤ p(z, ·) ≤ γiθy(·), z, y ∈ Ci, for i = 1, . . . , N.(12)

Let us assume this done.

The construction (11), while an improvement over (6), may suffer another defect.

Due to the choice of auxiliary variable Y independently of the current state of the

field Xn =
(
Xn(z) : z ∈ Z

)
, we can expect some redundancy in the proposed values

Φ(1), Φ(2), . . . when Y (n) occurs in a location sufficiently close to a previous value

Y (k) (k < n), whose associated proposal Φ(k) was accepted. In our simulations,

this appeared to matter only when the choices of θz and η were ‘bad’. Clearly the

scope for further extensions of the Field Coupler (Xn) is limitless.

3. Generating finitely coupled fields

The Field Couplers of the previous section are straightforward to implement,

and computer experiments suggest that a small number of iterations suffice to

obtain a finite range. Here we mean of course that the Markov chain Xn must be

simulated for a small but fixed (non-random) number of iterations, starting from

an uncoupled version of the field. However, for any n, the realized field Xn will

only ever be finitely coupled within some ε > 0.
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For application to simulation problems, it is desirable to implement a procedure

which will output with certainty a finitely coupled version of the field of interest.

Here, we describe how this can be accomplished in general, while in the next section,

some concrete Markov Chain Monte Carlo examples will be discussed.

The difficulty encountered when trying to output a finitely coupled field using

the Markov chain Xn is that, even though X0 ∈ Π and Xn ∈ Π for all deterministic

times n ≥ 0 (recall that Π was defined in (3)), if we stop the chain at some random

time τ by observing the field (Xn(z) : z ∈ Z) and deciding it has fully coupled, the

result Xτ no longer belongs to Π in general. To illustrate, consider the following

naive procedure.

Faulty reasoning. Suppose that Z is compact and that p(z, y) and θz(y) are

continuous. It is often natural to start with an initial field X0 such that z 7→ X0(z)

is a.s. continuous. Consider a fixed z ∈ Z. If Tz denotes the first time that the

chain Xn(z) jumps (this happens when (9) occurs), it will also be the case that

Xn(z′) must jump for all z′ in a sufficiently small open neighborhood U of z. Now

‘freeze’ this neighborhood, and continue coupling only the field
(
X(z) : z ∈ Z\U

)
.

Very quickly we end up with a function X on Z having finite range, but does this

belong to Π? For fixed z, the variable XTz (z) is the first transition of the jump

chain associated with X ·(z), and this is well known to have stationary distribution

(1− rz(·))p(z, ·)µ(·), where rz(x) = P

(
X1(z) = x |X0(z) = x

)
. Since we began with

X0(z) ∼ p(z, ·)µ(·), an easy calculation shows that we must have

P

(
XTz (z) ∈ dy

)
=
∫
p(z, x)

(
1− rz(x)

)−1
P

(
X1(z) ∈ dy |X0(z) = x

)
µ(dx).

In general, stopping times τ for which Xτ (z) ∼ P (z, ·) are hard to find. If both

Xτ ∈ Π and Xτ is independent of τ , then τ is known as a strong stationary time.

There is another method to generate a finitely coupled field in finite time, by

going backwards in time rather than forward. The details will occupy the rest of

this section. Throughout, we hypothesize that Z is covered by a finite number of

1-small sets C1, . . . , CN , and that (12) holds. We now briefly remind the reader

of the Propp and Wilson formalism for perfect simulation by Markov chains, duly

adapted to our requirements.
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The equations (6) and (11) can be viewed as implicitly defining a sequence of

independent random functions Gn : F(Z;E) × Ω → F(Z;E) so that Xn+1(ω) =

Gn(Xn(ω), ω). If function composition occurs in the first variable, then we have

equivalently

Xn(ω) =
(
Gn ◦Gn−1 ◦ · · · ◦G1

)
(X0(ω), ω).

It is convenient to extend the family (Gn) for values n = 0,−1,−2,−3, . . . so that

we may think of the chain Xn as evolving from the distant past.

By (5), it is clear that for any u ∈ F(Z;E),(
Gn ◦Gn−1 ◦ · · · ◦G1)(u) ∈ Π if u ∈ Π.(13)

But the maps Gn are exchangeable, so if we write Yn(u) = G0 ◦G−1 ◦ · · · ◦G−n(u)

for u ∈ Π, then by (13) we have automatically

lim
n→∞

Yn(u) ∈ Π, if u ∈ Π and the limit exists.(14)

Suppose moreover that we can prove (as we do in Theorem 5) that the random

time

T = inf
{
n : Yn(·) is constant on Π

}
is a.s. finite. In that case, we have

Yn(·) = YT ◦GT−1 ◦ · · · ◦G−n(·) = YT (·) on {T ≤ n}.(15)

This fact, first noted by Propp and Wilson (1996) in a different context, forms the

basis for their perfect simulation method. In our setting, it suffices now to construct

a random time T ′ ≥ T for which we can conveniently test if {T ′ ≤ n} has occurred.

By (14) and (15) we must then have X0 ≡ Yn(·) ∈ Π, a perfect specimen of a

finitely coupled field. We shall do this now for the algorithm (11), as (6) can be

viewed as the special case when θy(·) ≡ θ(·) for all y ∈ Z.

Intuitively, we shall think of the field Xn defined by (11) as a random point

pattern on Z × E (the graph of the map z 7→ Xn(z)). One iteration of the Inde-

pendence Field Coupler (11) on the field Xn consists in the deletion of a section

of the point pattern, replacing it by a new pattern. If we consider two initially

distinct point patterns u and u′, then for any `, the patterns G`(u) and G`(u′) will

agree at all points that were newly added, provided these had been accepted by
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both patterns. Thus we can expect that for all sufficiently large n, all the points

making up the patterns u and u′ originally have disappeared from the patterns

G0 ◦ G−1 ◦ · · · ◦ G−n(u) and G0 ◦ G−1 ◦ · · · ◦ G−n(u′), which will therefore agree:

Yn(u) = Yn(u′).

We now construct the stopping time T ′ ≥ T . We assume that (12) holds. To

generate a finitely coupled field,

(FC-1): Generate IID sequences (ξ(0), Y (0),Φ(0)), (ξ(1), Y (1),Φ(1)), . . . where

ξ(k) ∼ U [0, 1], Y (k) ∼ η(·),Φ(k) ∼ θY (k)(·)µ(·), k = 0, 1, 2, 3, . . .(16)

(FC-2): Let T ′k = min
{
s ≥ 0 : εkνk(Φ(s))/θY (s)(Φ(s)) > γkξ

(s)
}

and set T ′ =

max{T ′k : k = 1, . . . , N}.

(FC-3): For fixed n, define the random map G−n from (ξ(n), Y (n),Φ(n)) by:

if u = (u(z) : z ∈ Z) is a field,

(
G−n(u)

)
(z) =

Φ(n) if p
(
z,Φ(n)

)
θY (n)

(
u(z)

)
> ξ(n)p

(
z, u(z)

)
θY (n)

(
Φ(n)

)
u(z) otherwise.

Note immediately that
(
G−T ′k(u)

)
(z) is independent of u for

z ∈ Ck, and hence so is
(
Yn(u)

)
(z) for all n ≥ T ′k. Consequently,

YT ′(u) is a random field which is independent of u. Moreover,

P(T ′ <∞) = 1 as follows from Theorem 5 below.

(FC-4): If u ∈ Π, then X = G0 ◦ G−1 ◦ · · · ◦ G−T ′(u) is finitely coupled and

belongs to Π. We output X.

To summarize, we have the following result:

Theorem 5. Let Z be coverable by a finite number of 1-small sets C1, . . . , CN such

that (12) holds. There exists a finitely coupled field X corresponding to the kernel

P which a.s. can be constructed in a finite number of iterations of the algorithm

(FC-1, . . . ,FC-4).

Proof. All we need to check is that P
(
T ′ <∞

)
= 1. Now each T ′k defined in (FC-2)

is binomially distributed with strictly positive success probability, from which the

claim follows.
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At each iteration, we can test very simply whether T ′ has occurred or not. The

number T ′ − T of iterations “wasted” will depend upon the overall quality of the

estimates (12). We shall describe some of our findings in the next section.

Note also that the total number of values in the range of X is bounded by T

(hence by T ′, which has geometric tails).

The algorithm (FC-1, . . . ,FC-4) given above is not interruptible. Thus it is

possible that a particular run to produce a finitely coupled field X can take a large

number of computations. If we stop the run when a fixed number n0 of iterations

has been reached, and begin afresh, we are biasing the output X in favour of fields

which require at most n0 iterations to generate. Since n0 is also the maximum

number of distinct values contained in the range of z 7→ X(z), we are effectively

biasing in favour of a bounded range. While this is a potential problem, the stopping

time T ′ will often be very small unless the estimates (12) are poor.

Fill (1997) proposed another method for perfect simulation of a target probability

density, based on rejection sampling. This has the advantage of being interruptible.

However, the chain (Xn, Y (n)) is not reversible on Π (since the set of finitely coupled

fields is absorbing) and a modification of Fill’s method for Field Coupling appears

more complicated.

4. Flows and Markov chains: coupling two chains

For the remainder of this paper, we shall take Z = E. We are given a kernel

P (x, dy) on E representing the transition function of some Markov chain. For any

sequence of random fields X(1),X(2), · · · ∈ Π, we can define a corresponding flow

Fs,t : E → E,

Fs,t(x) = X(t−1) ◦ · · · ◦ X(s)(x), s < t, x ∈ E.(17)

Then if we set Xt(x) = F0,t(x), we have simulateously realized all Markov chains on

E with transition function P and deterministic initial condition. It is common in

simulation studies to take the random fields in the form X(k)(z) = f(z, ζk), where

f is some measurable function and (ζk) is an IID sequence. This has been called

a Stochastic Recursive Sequence (SRS) construction (Borovkov and Foss, 1992). It

should be noted however that it is by no means necessary to take the same function

f for each k, so long as the resulting field X(k) always belongs to Π.
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We shall now discuss briefly an application of the Field Couplers to the problem

of coupling two such Markov chains, Xt(x1) and Xt(x2) say, both with the same

transition kernel P .

Recall first that a coupling time here is a random time T ≥ 0 such that XT (x1) =

XT (x2). Since both chains are built from the same flow, this also means that

XT+t(x1) = XT+t(x2) for all t > 0. The coupling time is called successful if P(T <

∞) = 1. The existence of a successful coupling time is by no means guaranteed,

and obvioulsy depends on the choice of flow Fs,t.

Some flows do not have successful coupling times, even for uniformly ergodic

kernels P . As an example, consider the random walk on the unit circle S1 = {eiθ :

θ ∈ R}, given by the flow

Ft,t+1

(
exp(ix)

)
= exp i(x+Wt), Wt ∼ N (0, 1).

The Markov chain Xt(eix) is aperiodic and uniformly ergodic, with stationary dis-

tribution given by the Lebesgue measure on S1. From the description of Ft,t+1 it

is also clear that two chains Xt

(
exp(ix1)

)
and Xt

(
exp(ix2)

)
evolve in parallel, and

can never couple unless x1 = x2( mod 2π).

The above example does not preclude the existence of some alternative flow

F̃t,t+1 which will allow a successful coupling to take place (indeed, the uniform

ergodicity guarantees this existence). Now given any flow of the type in (17), we

claim that the Field Couplers can generate such a new flow F̃s,t, for which the

coupling of the associated chains X̃t(x1) and X̃t(x2) is successful.

Indeed, suppose that for each s, we iterate the Simple Field Coupler n times

with seed X(s), obtaining a new field X
(s)
n ∈ Π. We define the flow

F̃s,t(z) = X(t−1)
n ◦ · · · ◦ X(s)

n (z),(18)

and corresponding Markov chains X̃t(z) = F̃0,t(z). We shall consider fields X
(s)
n

generated by the Simple Field Coupler only here, for simplicity and because the

Independence Field Coupler can be treated in a very similar way.

The following result shows that if the proposal density θ has heavy enough tails,

then coupling of X̃t(x1) and X̃t(x2) is always successful for uniformly ergodic kernels

P . This will be used in the next section.
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Note that the coupling method proposed here does not require any explicit com-

putations of minorization conditions, merely the knowledge that they exist. This

is unlike the classical coupling method based on splitting, whereby two chains both

have to enter an explicitly defined small set C simultaneously, right before coupling.

The proof below also shows that if P is only positive Harris recurrent, then

coupling is successful with strictly positive probability.

Theorem 6. Let Fs,t be an arbitrary flow for P , and suppose that the target density

p(x, y) and proposal density θ(y) satisfy p(z, y) < γ(z)θ(y) for some function γ(z)

which is bounded on a 1-small set C. If P is aperiodic and uniformly ergodic, then

P

(
X̃t(x1) = X̃t(x2) eventually

)
= 1 for all x1, x2 ∈ E.

Proof. Since Fs,t is arbitrary, we shall assume that (18) holds with n = 1. Recall

that we denote by Xs(x) the MC started from x and constructed from the original

flow Fs,t, and by X̃s(x) the MC started from x constructed from the new flow F̃s,t

obtained after iterating the Simple Field Coupler. We shall analyse the law of

T̃ (x1, x2) = min{s ≥ 0 : X̃s(x1) = X̃s(x2)}.

Since P is uniformly ergodic, there exist m and α > 0 such that P(Xm(x) ∈

C) ≥ α holds for all x ∈ E. Denote by H(y) the first exit time of the chain

(Φ(s−1),Φ(s), ξ(s)), started initially at (y,Φ(1), ξ(1)), from the set {(u, v, w) : p(u, v) >

wγ(u)θ(v)}. If H(y) > m, then because the proposal θ(·) dominates p(z, ·), we must

have

p(y,Φ(1)) > γ(y)ξ(1)θ(Φ(1)),

p(Φ(1),Φ(2)) > γ(Φ(1))ξ(2)θ(Φ(2)),

...

p(Φ(m−1),Φ(m)) > γ(Φ(m−1))ξ(m)θ(Φ(m)),

and consequently X̃1(y) = Φ(1), X̃2(y) = Φ(2), . . . ,X̃m(y) = Φ(m). In particular,

either X̃m(x) = X̃m(y) = Φ(m) (when T̃ (x, y) ≤ m holds), or else X̃s(x) 6= Φ(s) for

all s ≤ m (when T̃ (x, y) > m holds), and then X̃s(x) = Xs(x).

Now consider the eventBm+1 =
{
εν
(
Φ(m+1)

)
> maxz∈C γ(z)ξ(m+1)θ

(
Φ(m+1)

)}
.

When this holds, because the proposal θ(·) dominates p(z, ·), all chains which satisfy
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X̃m(x) ∈ C must couple,i.e. X̃m+1(x) = Φ(m+1). Consequently,

P

(
T̃ (x, y) ≤ m+ 1

)
≥ P

(
Xm(x) ∈ C, X̃m(y) ∈ C,H(y) > m,Bm+1

)
= P

(
Xm(x) ∈ C

)
P

(
Φ(m) ∈ C,H(y) > m

)
P(Bm+1).

Let A be a set of strictly positive stationary measure and β > 0 a number such that

infy∈A P(Φ(m) ∈ C,H(y) > m) > β holds. Such a set must exist, for otherwise we

would have F̃s,s+1 ≡ Fs,s+1 a.s. We estimate

inf
y∈A

P

(
T̃ (x, y) ≤ m+ 1

)
≥ αβP(Bm+1) = δ > 0,

and note that this is independent of x. To finish the proof, observe that if we begin

with two chains X̃s(x1) and X̃s(x2) such that x1 6= x2, then because X̃s(x2) is

positive recurrent, it must enter the set A infinitely often. Each time this occurs,

regardless of the current location x of the chain X̃s(x1), there exists at least δ

probability that the two chains couple within m + 1 steps. The Borel-Cantelli

lemma therefore gives P(T̃ (x1, x2) <∞) = 1.

In case the kernel density p(x, y) and proposal θ(y) are continuous, on a lo-

cally compact state space E, a sufficient condition for the existence of γ(z) is that

limy→∞ p(z, y)/θ(y) = 0 for all z.

Theorem 6 is also valid for the Independence Field Coupler (defined in Section 2,

Example 2). In this case, since there is a range of proposal densities θz(·) to choose

from, the hypothesis can be weakened as follows: There exists some function γ(z, w)

which is bounded on a set C × D such that p(z, y) < γ(z, w)θw(y), with C small

and D of positive η-measure.

5. Coupling many Markov chains

In this section, we are interested in the question whether the whole collection

Xt(x) : x ∈ E of Markov chains can be coupled in a common finite time. We

already know from Theorem 6 that any two given chains Xt(x1) and Xt(x2) cou-

ple successfully in a time T (x1, x2) < ∞ a.s. , but the possibility remains that

supx1,x2
T (x1, x2) = ∞. Indeed, it was shown by Foss and Tweedie (1997) that

there exists some flow Fs,t corresponding to P such that supx1,x2
T (x1, x2) < ∞

if and only if P is uniformly ergodic. Thus we must here too restrict ourselves to
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such kernels P . We would like to investigate the case that Fs,t is fixed to be of the

form (18) with n ≥ 1.

Definition 7. Let Fs,t be a flow for the transition kernel P on the state space E.

We say that Fs,t collapses in finite time if

P

(
x 7→ Fs,t(x) is constant for all large values of t

)
= 1.

We say that Fs,t thins at time r > s if

|{Fs,r+1(x) : x ∈ E}| < |{Fs,r(x) : x ∈ E}| .

As a direct consequence of the previous sections, we can state

Theorem 8. Let P be uniformly ergodic with a density p(x, y) which satisfies (8)

for some collection C1, . . . , CN of 1-small sets covering E. If Fs,t is any random

flow with one-step transition probability P , then the flow F̃0,t defined by (18) using

the Simple Field Coupler with n ≥ N (where X(t) = Ft,t+1) collapses in finite time.

Proof. Applying the Simple Field Coupler n ≥ N times ensures that the random

field X
(s)
n is finitely coupled within some ε > 0. Consequently, the Borel-Cantelli

lemma implies that the field F̃0,t0 has finite range a.s. , for some finite t0. Now

using Theorem 6 ensures that the flow F̃0,t0+t thins repeatedly until collapse.

Variations on the above theme are possible. For example, we can generate (per-

fectly) finitely coupled fields X(s) and use these to construct F̃s,t. This is discussed

below for Metropolis-Hastings chains.

In principle, we can now collapse the flows of any uniformly ergodic Markov

chains, provided the transition kernel P has a density. We give two examples.

Example: Random Walk. Let P (z, dy) = q(y − z)dy, where q(·) is a contin-

uous, not necessarily symmetric density on Rd. A random field belonging to Π is

easily found, namely

X(z) = z +W, where W ∼ q(y)dy.

We propose to find a finitely coupled version of X̃ on a compact subset Z ⊂ Rd. We

cover Z by a finite number of closed balls Ci = B(z, ri) say, i = 1, . . . , N , and such

that εiνi(y) = infz∈Ci q(y − z) is not identically zero. Let g be the (continuous)
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density of a distribution on Rd with heavier tails than q. We will need to assume

that q(·) ≤ Cg(·) for some constant C. Then put

θz(y) ≡ θi(y) := g(y − zi) if z ∈ Ci = B(zi, ri),

and calculate the constants γi = maxz∈Ci,y∈Rd q(y − z)/g(y − zi). Finally, take

Y ∼ η(·), where η is the uniform distribution on the set of points {z1, . . . , zN}.

Now applying (FC-1, . . . , FC-4), we obtain a new field X̃(z) ∼ q(y− z)dy which is

a.s. finitely coupled on Z.

Note that we have not assumed that q(·) is symmetric. For symmetric and

unimodal increment distributions, an alternative field coupling method for X ex-

ists, proposed by Murdoch and Green (1998). Their method, called the Bisection

Coupler, uses translations and reflections to construct a finitely coupled field, and

appears to require fewer computations in general. However, while the number of

points in the range of the resulting field is almost surely finite, they show that it

has infinite expectation. In contrast, for the field coupler presented here, the range

of the field X̃ never contains more points than the number of iterations T ′ required

to generate it, which as a random number has geometric tails.

Example: Time-Discretized Diffusion. On the interval Z = [0, 1], consider

the Langevin random field

X(z) = z + σW + σ2π′(z)/2π(z),(19)

where π(z) is a strictly positive differentiable function on Z and W is a standard

Gaussian random variable. Let us write

p̃(z, y) = exp
(
−
∣∣y − z − σ2π′(z)/2π(z)

∣∣2 /2σ2
)

(20)

for the unnormalized density of X(z). None of our calculations requires the nor-

malization constant. For i = 1, . . . , N , we let Ci = [(i − 1)/N, i/N ] and calculate

ai = infz∈Ci
(
z + σ2π′(z)/2π(z)

)
and bi = supz∈Ci

(
z + σ2π′(z)/2π(z)

)
. In other

words, the interval [ai, bi] must contain the means of the distributions q(z, ·) for

all z ∈ Ci. For the proposal Θz(x, ·), let us take (independently of x) the density
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proportional to

θi(y) =


exp
[
− |y − ai|2 /2σ2

]
if y ≤ ai,

1 if y ∈ [ai, bi],

exp
[
− |y − bi|2 /2σ2

]
if y ≥ bi.

It is immediately seen that p̃(z, ·) ≤ θi(·) for all z ∈ Ci, and this inequality is sharp.

Also, take εi = 1 and

νi(y) =

exp
(
− |y − bi|2 /2σ2 if y ≤ (ai + bi)/2

exp
(
− |y − ai|2 /2σ2 if y ≥ (ai + bi)/2

which completes the series of estimates (12). We choose Y uniformly in {1, . . . , N},

or according to some other distribution adapted to the gradient π′(z)/π(z) if de-

sired. Since

νi(y)/θi(y) =


exp− 1

2σ2

(
a2
i − b2i + 2y(bi − ai)

)
if y ≤ ai

νi(y) if y ∈ [ai, bi]

exp− 1
2σ2

(
b2i − a2

i + 2y(ai − bi)
)

if y ≥ bi,

the probability vi := P

(
Y falls in Ci and νi(Φ)/θi(Φ) > ξ

)
is easy to calculate, and

then we can write down explicitly the distribution of T ′, the time until termination

of the field coupling procedure (FC-1, . . . ,FC-4). This could then be optimized in

N , the total size of the covering C1, . . . , CN .

A similar analysis can be performed for any random field on Rd of the form

X(z) =
(
bi(z) +

d∑
j=1

σij(z)Wj , i = 1, . . . , d
)
,

where b(z) is a vector field on Rd, σ is a matrix-valued field on Rd and (W1, . . . ,Wd)

is a standard d-dimensional Gaussian random variable. Such fields arise in the

recent work by Stramer and Tweedie (1997), as examples of natural uniformly

ergodic Metropolis-Hastings proposals on Rd.

Metropolis-Hastings type chains are a class of Markov chains whose transition

kernels do not possess a density (unless the state space is countable). Their general

form is (cf. Roberts and Smith, 1993)

P (x, dy) = q(x, y)
{

1 ∧ π(y)q(y, x)
π(x)q(x, y)

}
µ(dy) + r(x)δx(dy),(21)
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where r(x) is chosen so that P (x,E) = 1 and q(x, y)µ(dy) is the transition density

of some arbitrary proposal chain. While it is possible to modify the Field Couplers

to work on transition kernels of this form (this requires the proposal Θz(x, ·) �

P (x, ·)), it is usually very impractical to evaluate the rejection probability r(x),

and this renders this method inapplicable.

Fortunately however, it is possible to proceed otherwise, as the proposal kernel

q(x, y)µ(dy) is often analytically tractable. Common examples of such kernels were

given as examples above, and the Langevin proposal field was explicitly analysed

on a simple region.

Suppose now that we have constructed a random field Q(z) ∼ q(z, ·)µ(·). We

shall have X(z) ∼ P (z, ·) with P given by (21) as soon as we set

X(z) =

Q(z) if π
(
Q(z)

)
q
(
Q(z), z

)
> ξ · π(z)q

(
z,Q(z)

)
,

z otherwise,
(22)

where ξ ∼ U [0, 1]. We may view the Metropolis-Hastings accept/reject step as

an operator on fields, yielding X when applied to Q. As such, it has some useful

properties.

Suppose we generate an IID sequence of random fields Q(1), Q(2), . . . , and then

construct X(1), X(2), . . . by (22), using these to generate a flow Fs,t(z) = X(t−1) ◦

· · · ◦ X(s)(z) for the Markov chain with transition kernel P given by (21). The

random (“rejection”) sets {z : X(k)(z) = z} ⊂ Z are not usually empty, at least

with high probability.

Proposition 9. Suppose that Q(1), Q(2), . . . are finitely coupled proposal fields and

define X(1), X(2), . . . as a Metropolis Hastings proposal, by (22). Then the random

sets

{z : F0,t(z) = z} = {Ft has finite range}c

are strictly decreasing as functions of t. If the state space E is irreducible and

coverable by a finite number of 1-small sets, then in fact {z : Ft(z) = z} ↓ ∅ and

the flow collapses in a finite time.

Proof. Since {z : F0,t(z) = z} = {z : X(0)(z) = z} ∩ · · · ∩ {z : X(t−1)(z) = z}, the

sets are clearly decreasing. Moreover, for each z ∈ E, the Markov chain X(k)(z)
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must move eventually, and this occurs simultaneously for all z within a small set

in at most geometrically distributed time. Since E is coverable by a finite number

of such sets, we get {z : Ft(z) = z} = ∅ in finite time. After that, the map Ft(·)

has only a finite range, and thus by Theorem 6 we get collapse eventually.

The result in Proposition 9 is useful for coupling procedures due to the identity

{z : Ft(z) = z}c = {Ft has finite range}. This set must be monitored if we wish to

detect whether F0,t(·) has collapsed.

Note that if we do not assume that Q(k) is finitely coupled (only to within

ε say), the monotonicity of the sets {z : Ft(z) = z} is preserved, but the sets

{Ft has finite range} are no longer their complements. Thus they can grow and

shrink in complicated ways, which can make them untrackable for practical pur-

poses.

6. Towards Perfect Simulation with Hastings-Metropolis chains

We have seen in the last section that if P defined by (21) is uniformly ergodic,

then we can construct numerically a finite time coupling of all Markov chains Xt(x)

with transition kernel P and deterministic initial condition X0(x) = x ∈ E. The

exact dynamics of the coupling are no longer tractable, since in fact they are ran-

dom. Instead, we gain an automatic method of coupling chains, which does not

depend on our ability to find clever ways to couple the flows analytically.

For uniformly ergodic Metropolis-Hastings chains, we describe now how to per-

fectly simulate a given target distribution, using the Field Couplers described in

this paper. A large class of uniformly ergodic M-H chains compatible with this

method can be found in Stramer and Tweedie (1998).

(PMH-1): Choose a covering of E by small sets C1, . . . , CN and calculate

the estimates (12).

(PMH-2): Using the steps (FC-1, . . . ,FC-4), generate finitely coupled

fields (Q(k) : k = −1,−2, . . . ). For every Qk, keep track of the

(finite) range of possible values over each Cj, j = 1, . . . , N.

(PMH-3): Construct X(k) from Q(k) using formula (22) (with ξ = ξ(k)), and

for each Cj, given the range of values Q(k)(Cj) = {q1, . . . , qm}
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say, test whether

π(qr)q(qr, z) > ξ(k)π(z)q(z, qr) for all z ∈ Cj , r = 1, . . . ,m.(23)

Let Bk denote the union of all sets Cj for which the test (23)

fails. Clearly {z : X(k)(z) = z} ⊂ Bk.

(PMH-4): Let k < 0 be given. Check that

Bk ∩Bk+1 ∩ · · · ∩B1 = ∅.

If this holds, then typically there will be k < ` < 0 such that

Bk ∩Bk+1∩ · · ·∩B` = ∅. For each k ≤ n ≤ `, let {q1, . . . , qr} = Qn(E)

denote the (finite) range of Q(n). Compute the set

Hn =
{
X(1) ◦ · · · ◦ X(n+1)(qi) : i = 1, . . . , qr

}
.

If Hk = Hk+1 = · · · = H` = {p} say, then the value of p is a

perfect draw from π. Stop. Otherwise, try (PMH-4) with an

earlier value of k.

We do not discuss ways of implementing the procedure (PMH-1, . . . ,PMH-4) effi-

ciently, although it is clearly possible to exploit various recurrence relations.

Nothing more needs to be said of steps (PMH-1) and (PMH-2). For step (PMH-

3), it is necessary to perform some analysis, determining a lower bound

inf
z∈Ci

π(y)q(y, z)/π(z)q(z, y) ≥ bi(y), i = 1, . . . , N(24)

so that we can perform the test (23) conveniently. Typically, this can be done

by finding bounds π(y)/q(z, y) ≥ b′i(y) and π(z)/q(y, z) ≤ b′′i (y), taking bi(y) =

b′i(y)/b′′i (y).

The step (PMH-4) can be performed efficiently if we construct tables of the

correspondences Cj 7→ X1 ◦ · · · ◦ Xn(Cj).

Example: Langevin Algorithm. We consider again the Langevin random

field (19) on Z = [0, 1], this time considering it as a proposal field for the Metropolis-

Hastings algorithm with target distribution π. Hence, up to normalization, we have

q(y, z) = p̃(y, z), the latter being defined by (20). To implement the algorithm

(PMH-1, . . . ,PMH-4), we need only compute the bounds (24). Recall that we took
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Ci = [(i−1)/N, i/N ]. Let f(z) = z+σ2π′(z)/2π(z) denote the mean of the density

q(z, ·). We have f(z) ∈ [ai, bi] for all z ∈ Ci, consequently

π(y)/q(z, y) = π(y) exp
(
|z − f(y)|2 /2σ2

)
≥

π(y) if i−1
N ≤ f(y) ≤ i

N

π(y) minj=i,i−1 exp
(
|j/N − f(y)|2 /2σ2

)
otherwise,

π(z)/q(y, z) = π(z) exp
(
|y − f(z)|2 /2σ2

)
≤ sup
z∈Ci

π(z) exp
(
(|y − ai|2 ∨ |y − bi|2)/2σ2

)
.

Note that it does not matter whether we know the normalizing constant of π or not,

since we are now taking the ratio of these two quantities to get bi(y). In particular,

these calculations can be done on any conveniently chosen multiple of π. Setting

π̂i(y) = π(y)/ supz∈Ci π(z), we find

bi(y) =


π̂i(y) exp

(
− |y − ai|2 ∨ |y − bi|2

))
if i−1

N ≤ f(y) ≤ i
N

π̂i(y) exp
(
minj=i,i−1 |j/N − f(y)|2 /2σ2

− |y − ai| ∨ |y − bi|2
)

otherwise.
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