
A QUASI-ERGODIC THEOREM FOR EVANESCENT
PROCESSES

L.A. BREYER AND G.O. ROBERTS

Abstract. We prove a conditioned version of the ergodic theorem for Markov

processes, which we call a quasi-ergodic theorem. We also prove a convergence

result for conditioned processes as the conditioning event becomes rarer.

1. Introduction

Consider a Markov process X evolving on its state space E, and which is killed

at some a.s. finite random time τ . The first result of this paper states that, under

suitable conditions on the process (essentially positive λ-recurrence), the following

quasi-ergodic limit theorem holds:

lim
t→∞

Ex

[
1
t

∫ t

0

g(Xs)ds
∣∣∣∣τ > t

]
=
∫
E

gdm, g ∈ L1(dm), x ∈ E

for some probability measure m on E.

The measure m is the stationary distribution for a Markov process Y , which can

be interpreted as X, conditioned such that a.s. τ = ∞. In terms of Y , the main

assumption we shall make on X is that Y be positive Harris recurrent.

One motivation for proving this result comes from Markov chain Monte Carlo

techniques (see for instance Smith and Roberts, 1993). The basic idea is to simulate

a positive recurrent Markov chain in order to estimate properties of its stationary

measure by considering suitable ergodic averages along sample paths. In practice,

it is frequently the case that the actual distribution which is ultimately estimated is

the stationary distribution of a conditioned chain. As an example of this consider

the practice of simulating a Markov chain on a computer. The simulation run

is terminated and restarted if numerical overflows are achieved. Thus, in effect,
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successful runs of the Markov chain are conditioned to not achieve these numerical

problems.

In this way it is often the case that, when computing the invariant measure π

using time-averages, one actually computes the measure m above instead. It is

therefore of interest to know how far apart m and π really are. Our second main

result demonstrates that under mild assumptions, when the conditioning event is

sufficiently rare, π is well approximated by m.

Of course in general, it may be in fact that m exists while π doesn’t, for instance

if X is Brownian motion in more than 3 dimensions, and τ is the first exit time from

a compact set. However in this paper (guided by the Markov chain Monte Carlo

motivation) we shall be assuming that all the relative positive recurrence properties

hold.

2. Positive λ-recurrence

We describe here the main assumption which ensures the validity of the quasi-

ergodic theorem. The facts laid out here shall be used in the proof of the theorem,

given in the next section.

Let X be a Strong Markov process evolving on a state space E, endowed with

some countably generated σ-algebra E . Typically, E is locally compact, and E de-

notes the Borel σ-algebra. The notation we use is as follows: Xt denotes the sample

path, defined as usual on the canonical space of all right continuous trajectories with

left limits. The lifetime of X is the stopping time

τ = inf{t > 0 : Xt /∈ E},

and we denote by Px the unique law of the process satisfying Px
[
limt↓0Xt = x

]
= 1.

Let f be a positive (i.e. nonnegative) measurable function (all the real-valued

functions in this paper will be assumed E-measurable). Given a real number λ, we

say that f is λ-invariant provided that the equation

Px

(
f(Xt), τ > t

) def=
∫

1{τ>t}f(Xt)dPx = eλtf(x)

holds for each t > 0. The existence of such a function can often be reduced to

a search for a positive solution to the equation Af = λf , where A is a suitable

generator for X. Dually, one can look for measures µ which satisfy an equation
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(Ah)dµ = λ

∫
hdµ for all test functions h. This equation is typically satisfied by

a λ-invariant measure, that is a (σ-finite) measure µ with the property that, for all

positive functions h and t > 0,

Pµ

(
h(Xt), τ > t

) def=
∫
µ(dx)Px

(
h(Xt), τ > t

)
= eλt

∫
h(x)µ(dx).

When µ is a probability measure, it is often interpreted as a quasistationary

distribution. This is defined as an initial distribution with the property that X is,

when started according to µ, stationary given τ has not occured:

Pµ(f(Xt) | τ > t) =
∫
fdµ.

It was shown by Nair and Pollett (1993) that this last equation is equivalent to

λ-invariance (with λ ≤ 0), and then Pµ(τ > t) = eλt. Thus under Pµ, τ is indepen-

dent of X. Many Markov chain models used in biology seem to settle down to a

quasistationary distribution after a short time, even though on longer time scales

transience (typically associated with extinction of the population) is exhibited.

Every λ-invariant function can be used to construct a new law Q for X, under

which the process is again a Strong Markov process, with state space Ef = {0 <

f <∞}. The probability measure Q is characterized on path space by the formula

f(x)Qx(F ) = Px(F, e−λtf(Xt), τ > t),

which is valid for all positive Ft measurable random variables F , t > 0 and x ∈ Ef .

The λ-invariance implies that Qx
[
τ = ∞

]
= 1, and X never leaves Ef in a finite

time if it begins its trajectory there.

Our main assumption is the following:

Positive (Harris) λ-recurrence: For some λ ≤ 0, there exists a λ-invariant

function f such that X is, under the probability measure Q, positive Harris

recurrent.

We remind the reader that, under the original probability law P, the given process

may well be transient. Indeed, if λ < 0, it can be shown that Px(τ < ∞) = 1 for

all x ∈ Ef .

When X is positive λ-recurrent, the state space Ef must necessarily be irre-

ducible under P. The stationary distribution m of X under Q has the property
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that

m(A) > 0 ⇒ Qx

[∫ ∞
0

1A(Xt)dt =∞
]

= 1, x ∈ Ef ,

and so m(A) > 0 implies that

Px

∫ ∞
0

1A(Xt)dt = f(x)Qx
∫ ∞

0

eλt1A(Xt)f(Xt)−1dt > 0

for all x ∈ Ef . This means that, under P, m satisfies the definition of an irre-

ducibility measure for X (see Meyn and Tweedie, 1993).

Now define a measure µ on Ef by the prescription
∫
gdµ =

∫
(g/f)dm. A

simple calculation using the stationarity of m under Q shows that µ so defined is

λ-invariant under P. Conversely, suppose that X has, under P, an irreducibility

measure on E. If, for some λ ≤ 0, there exists a nontrivial λ-invariant measure µ

and a strictly positive λ-invariant function f , then, according to a test of Tweedie

(see Tuominen and Tweedie, 1979) it suffices that 0 <
∫
fdµ < ∞ for the process

to be positive λ-recurrent. In that case, the measure m(dx) = f(x)µ(dx) is the

unique stationary distribution for X under Q.

Tweedie’s Test allows us to easily identify examples of positive λ-recurrent pro-

cesses. If X is a Markov chain on a finite and irreducible state space, it is λ-

recurrent, for the Perron-Frobenius theorem guarantees the existence of a pair of

positive eigenvectors for the generator matrix and its transpose, with common

eigenvalue λ. These vectors, which we denote by f and µ respectively, obviously

satisfy
∫
fdµ =

∑
i fiµi <∞.

Similarly, suppose that X is a uniformly elliptic diffusion on a bounded do-

main with smooth boundary. It is well known that there exists a pair of positive

continuous functions ϕ, ϕ∗ which vanish on the boundary and are respectively

eigenfunctions for the generator of X and its adjoint. Taking µ(dx) = ϕ∗(x)dx

and f(x) = ϕ(x), one has
∫
fdµ < ∞, and again the process turns out positive

λ-recurrent.

The asymptotic behaviour of t 7→ Px(τ > t) is known, provided µ is finite (see

Tuominen and Tweedie, 1979). To state it, we shall use the following normaliza-

tions: µ(E) = 1, and f satisfies 〈µ, f〉 = 1, where 〈µ, f〉 =
∫
fdµ. Then,

lim
t→∞

e−λtPx(τ > t) = lim
t→∞

f(x)Qx(f(Xt)−1) = f(x),(1)
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for every x ∈ Ef , by Harris recurrence under Q (see Revuz, 1979, and also Meyn

and Tweedie, 1993)

Roberts and Jacka (1995), see also Breyer (1997), have given an interpretation of

this result in terms of a conditioned process as follows: Fix a starting position x and

a time interval [0, t]. Their result asserts that the laws Px(· | τ > T ) converge weakly

to Qx as T tends to infinity, on the space of paths with time interval [0, t]. Thus if

we wait a long time T , then given that X is still alive, its law up to time t is well

approximated by Q. Their motivation was to understand so-called quasistationary

limit theorems, which typically give rise to λ-invariant measures. For example, a

positive λ-recurrent process typically exhibits the feature

lim
t→∞

Px(f(Xt) | τ > t) =
∫
fdµ.

In this context, the probability measure µ is known as a quasistationary distribution

for X. The λ-recurrence of X is however not necessary for the existence of the above

limit. Theorems of this type are useful in modelling the persistence of stochastic

models (for instance epidemics and branching processes).

In view of its close connection with quasistationarity, we refer to the theorem

below as a quasi-ergodic theorem.

3. Quasi-ergodic theorem

Theorem 1. Let X be irreducible and positive (Harris) λ-recurrent, with associ-

ated λ-invariant function f and measure µ. If µ(Ef ) <∞, then for every bounded

measurable function g and every x ∈ Ef ,

lim
t→∞

Px

[
1
t

∫ t

0

g(Xs)ds
∣∣∣∣τ > t

]
=
∫
gdm,(2)

where m(dx) = f(x)µ(dx)/〈f, µ〉 on Ef , and 〈f, µ〉 =
∫
fdµ.

Proof. Assume first that g is bounded and positive. For fixed u, put

hu(x) = inf
{
e−λrPx(τ > r)/f(x) : r ≥ u

}
,
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and note that, by (1), hu(x) ↑ 1, as u → ∞. By definition of the law Q, we also

have

e−λtPx(τ > t)
f(x)

Px

[
1
t

∫ t

0

g(Xs)ds
∣∣∣∣τ > t

]
=

1
t

∫ t

0

Qx

[
g(Xs)PXs(τ > t− s)e

−λ(t−s)

f(Xs)

]
ds

≥ 1
t

∫ t−u

0

Q

[
g(Xs)hu(Xs)

]
ds.

The function ghu belongs to L1(dm), for∫
g(y)hu(y)m(dy) ≤

∫
g(y)eλuPy(τ > u)µ(dy) ≤ ‖g‖∞ ,

and in view of the positive Harris recurrence of X under Q, Fatou’s Lemma and

the above calculations imply that

lim t→∞Px

[
1
t

∫ t

0

g(Xs)ds
∣∣∣∣τ > t

]
≥
∫
g(y)hu(y)m(dy)

↑
∫
g(y)m(dy) as u→∞.

The last assertion follows from monotone convergence. Since g is bounded, we can

repeat the argument, replacing g by ‖g‖∞ − g, which gives

lim t→∞
1
t
Px

[∫ t

0

g(Xs)ds
∣∣∣∣τ > t

]
≤
∫
g(y)m(dy).

Combining these last two steps gives the result (2) when g is bounded, positive,

and then for arbitrary bounded g by subtraction.

The above theorem may be viewed as a generalization of the standard ergodic

theorem for positive Harris recurrent Markov processes. Indeed, if λ = 0, it can be

shown that τ =∞ a.s. , and consequently (2) reduces to the well known result

lim
t→∞

1
t
Px

∫ t

0

g(Xs)ds =
∫
gdm.

A related theorem of ergodic theory in this context states that

Px

[
lim
t→∞

1
t

∫ t

0

g(Xs)ds = 〈g,m〉
]

= 1.(3)

An obvious generalization of this involving the conditioning event {τ > t} is not

possible when λ < 0, for we are discarding eventually every single sample path save

for a null set. A natural attempt to give an almost sure interpretation of this result

by a branching Markov process also fails as the following example illustrates.

Example. Consider a subcritical continuous time branching process X one

E = {1, 2, 3, . . . } with upward rates γi = iγ and downward rates δi = δi, (γ < δ,
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i ≥ 1). It is well known (see for example Asmussen and Hering, 1983) that X is

λ-positive recurrent with λ = γ − δ, and if τ denotes the extinction time of the

branching process,

f(x) = lim
n→∞

Px(τ > t)e−λt =
(
1− γ/δ

)2
x, x ≥ 1.

Construct a branching particle system as follows. Starting in x ∈ E, take a

particle Xt and let it evolve according to the law Px. Let e denote an independent,

exponentially distributed random variable with parameter |λ|. If the particle hasn’t

died before time e, replace it with two identical ones, each evolving independently

according to the law PXe . Repeating the previous steps on each of those ad infinitum

produces a branching Markov process with rate |λ|. For each subset A of E, let

now Zt(A) represent the number of particles in A at time t. This induces a random

measure Zt(dy), in terms of which (see Breyer, 1997)

lim
t→∞

Px

[
1
t

∫ t

0

〈Zt, g〉dt
]

=
∫
g dm.

However, we also have

Px

[
lim
t→∞

1
t

∫ t

0

〈Zt, g〉dt = 0
]

= 1.

To see this, let Bt = (X(1)
t , . . . , X

(Nt)
t ) denote the current state of the branch-

ing process, where Nt = Zt(E), and introduce the Lyapunov function V (Bt) =∑Nt
i=1X

(i)
t . It is easy to check that V (B) is a non-negative martingale which con-

verges to 0 almost surely.

4. Convergence of conditional invariant measures

For Markov Chain Monte Carlo applications, we wish to apply Theorem 1 when

τ = τn = inf{t > 0 : Xt /∈ En},

for some increasing sequence of subsets En of E, such that En ↑ E.

As we have seen, the result of the limiting operation (2) is a probability measure

mn carried by En. Suppose now that X is positive Harris recurrent on the state

space E, with invariant distribution π. Clearly mn 6= π, since mn is zero outside

En, but is it true that mn ⇒ π as n→∞?
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The theorem below answers this question in the affirmative. This follows from

a straightforward application of Martin boundary theory. For simplicity, we shall

make the following assumption on the Markov process X:

Absolute continuity: There exists, relative to some excessive measure ξ, a

jointly continuous density pt(x, y) for the transition function, i.e.

Px(g(Xt), τ > t) =
∫
pt(x, y)g(y)ξ(dy), g ≥ 0.

This assumption can be dispensed with completely, but the increase in tech-

nicality is not worth pursuing here. We refer the reader to Jeulin (1978).

Theorem 2. Let X be positive Harris recurrent on E with stationary distribution

π, and let En ↑ E be an increasing sequence of subsets, with τn = inf{t > 0 : Xt /∈

En}.

Let Xn denote the Markov process with state space En obtained by killing X

at time τn, and suppose that Xn is positive (Harris) λn-recurrent for each n, and

that a.s. τn ↑ ∞. Let µn be the λn-invariant measure for Xn, assumed to sat-

isfy µn(En) = 1. Let fn be the corresponding λn-invariant function, satisfying

〈fn, µn〉 = mn(En) = 1, where mn(dx) = fn(x)µn(dx). Then the following state-

ments hold:

(i) For each x, y ∈ E, limn→∞ fn(y)/fn(x) = 1.

(ii) For any bounded measurable positive function g, limn→∞〈g, µn〉 = 〈g, π〉.

(iii) Let Qn denote the law of the (Xn, fn)-conditioned process, then for each x ∈

E, t > 0, limn→∞Q
n
x(· | Ft) = Px(· | Ft).

(iv) For any bounded measurable positive function g, limn→∞〈g,mn〉 = 〈g, π〉.

Before presenting the proof, we shall describe some of the notation to be used.

When λ ≤ 0, a λ-invariant function f is excessive: limt→0 Ptf ↑= f , where

Pt(x, dy) = Px(Xt ∈ dy, τ > t). Similarly, a λ-invariant measure µ is also excessive

when λ ≤ 0: limt→0 µPt ↑= µ.

The following results may be found in Meyer (1968). Let G(x, y) =
∫∞

0
pt(x, y)dt

denote the Green’s function of X; given a measure ν such that the function y 7→∫
ν(dz)G(z, y) is continuous into [0,+∞], there exists a metrizable compactification
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F of E, unique up to homeomorphism, such that the function

y 7→ K(x, y) def= G(x, y)/
∫
ν(dz)G(z, y)

has a continuous extension to F for each x ∈ E (this is also denoted K(x, y)). If h

is an excessive function satisfying 〈h, ν〉 = 1, there exists a probability measure θ

on F representing it: h =
∫
K(·, y)θ(dy).

If µ is an excessive measure, a similar representation exists. This is shown by

exploiting the backwards Markov process X̂ with transition function P̂ (x, dy) =

pt(y, x)ξ(dy) (note that the excessivity of ξ guaranteed that this is a transition

function. If µ is excessive for X, it must be absolutely continuous with respect

to ξ, and its Radon-Nikodym density dµ/dξ can be chosen excessive for X̂. As

above, the function dµ/dξ then has an integral representation on F̂ , the Martin

compactification of X̂.

Proof of Theorem 2. (i) Fix k > 0, x0 ∈ E, and consider for a moment the process

Xk. We shall denote all Martin boundary concepts constructed from Xk by the

superscript k. For each n ≥ k, the function fn(y) = fn(y)/fn(x0) is excessive for

Xk, since

Px(fn(Xt), τk > t) ≤ Px(fn(Xt), τn > t)/fn(x0)

= eλntfn(x)/fn(x0) ≤ fn(x),

and Fatou’s Lemma shows that limt→0 Px(fn(Xt), τk > t) ≥ fn(x). Let θkn be the

representing probability on F k (here the normalizing measure ν is the point mass

at x0, assumed to belong to Ek). Since F k is compact, it carries all weak limit

points θk of (θkn) in the Martin topology. In view of the continuity of Kk(x, ·), we

then have, for some subsequence (n′) and every x ∈ Ek,

f(x) def=
∫
Kk(x, y)θk(dy)

= lim
n′→∞

∫
Kk(x, y)θkn′(dy) = lim

n′→∞
fn′(x).

The convergence of fn′ to f does not involve the Martin topology, and thus cannot

depend on k. The integral representation in terms of θk does depend on k however.

Since the function f is excessive for each Xk, we have limt→0 Px(f(Xt), τk > t) ↑=

f(x). This being true for each k independently, it follows that the function f is
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excessive for X also: interchanging (as we can always do) increasing limits, we have

as required (since τk ↑ ∞)

lim
t→0

Px(f(Xt)) = lim
t→0

lim
k→∞

Px(f(Xt), τk > t)

= lim
k→∞

lim
t→0

Px(f(Xt), τk > t) = f(x).

Now X is positive Harris recurrent, and this is equivalent to having all excessive

functions constant (see Getoor, 1980). Since f is such a function, and f(x0) = 1, it

follows that f ≡ 1, and this is clearly independent of the subsequence (n′) chosen

to define it.

(ii) The proof of this statement is essentially just that of (i) for X̂. For fixed

k, the measure µn (n ≥ k) is easily shown to be excessive, so that the function

hn = dµn/dξ can be chosen excessive for X̂k. Moreover, we obviously have 〈hn, ξ〉 =

µn(En) = 1, and there exists an integral representation over the Martin compactifi-

cation based on K̂(x, y) = G(y, x)/〈ξ,G(y, ·)〉 (note that
∫
G(y, x)ξ(dx) = Py(τk) <

∞). Let γn be the representing measure, i.e. hn =
∫
K̂(·, y)γn(dy). Whenever

γn′ ⇒ γ on F̂ , we also have hn′(x)→ h(x) def=
∫
K̂(x, y)γ(dy), and we deduce that

h is excessive for X̂k. Equivalently, µ(dx) = h(x)ξ(dx) is excessive for Xk, and since

k is arbitrary, µ is excessive for X, thus a multiple of π. Now µ(E) = 〈h, ξ〉 = 1,

since 〈ξ, K̂(·, y)〉 = 1. Hence it follows that µ = π, and the limit function h is

independent of the subsequence (n′). By Fatou’s Lemma,

lim n→∞

∫
hndξ ≥

∫
hdξ = 1,

and since 〈hn, ξ〉 = 1, we have
∫
hndξ →

∫
hdξ. By Scheffé’s Theorem, hn converges

to h in L1(dξ), which implies that µn ⇒ π.

(iii) Fix x ∈ E, t > 0. Since each fn is λn-invariant for Xn, (i) and Fatou’s

lemma immediately give

lim
n→∞

Px

(
e−λnt

fn(Xt)
fn(x)

, τn > t

)
≥ 1,

which implies that the random variables Znt = e−λtfn(Xt)/fn(x) · 1(τn>t) converge

strongly in L1(dPx) by Scheffé’s Theorem. If H is a bounded, Ft measurable

random variable, it follows that

lim
n→∞

∫
HdQnx = lim

n→∞

∫
HZnt dPx =

∫
HdPx.
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(iv) By (i) and (ii), we have limn→∞(dµn/dξ)(x)fn(x) = (dπ/dξ)(x); Scheffé’s

Theorem implies that this convergence occurs in L1(dξ). If g is a bounded function,

it follows that

lim
n→∞

〈µn, gfn〉 = lim
n→∞

∫
g(dµn/dξ)fndξ =

∫
gdπ.

In particular, this holds for g = 1, and thus

lim
n→∞

〈mn, g〉 = lim
n→∞

〈µn, fng〉/〈µn, fn〉

= 〈π, g〉/〈π, 1〉.

Example. Suppose that E is the open interval (0, 1), and denote by X the

Brownian motion on E, with reflection at the boundaries. It is easily seen that X

is positive Harris recurrent, and therefore it has a unique stationary distribution.

Suppose now that we approximate E by the sets En = (1/n, 1 − 1/n). With the

notation of Theorem 2, the invariant measure for the process Xn, conditioned on

never leaving En can be calculated to be

mn(dx) = cos
(
π(x− 1/2)

1− 2/n

)2

dx

/∫ 1

0

cos
(
π(y − 1/2)

1− 2/n

)2

dy.

If we let n→∞, the measures mn converge to

m(dx) = cos(π(x− 1/2))2dx/

∫ 1

0

cos(π(y − 1/2))2dy,

which is certainly different from the stationary distribution of X. Thus the assertion

of Theorem 2 fails here, due to the fact that

τn ↑ inf{t > 0 : Xt− = 0 or Xt− = 1} <∞.

Example. A small modification of the previous example described below also

shows that sometimes, the measures mn can converge to a measure m even though

the original process is transient, without a stationary distribution: In the context of

MCMC simulations on a computer, this means that it is possible to wrongly identify

a transient process as recurrent. Thus it is important to take great care when

implementing the algorithm. Let E = (0, 1) as above, with En = (1/n, 1 − 1/n).

Instead of taking X to be reflecting Brownian motion, we construct the process by

killing ordinary Brownian motion on first exiting E. Unlike the previous example,
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we now have Xn ⇒ X as n → ∞; however, the process has a finite lifetime, and

therefore no invariant measure. As above, mn ⇒ m, but now m is simply the

stationary distribution of X, conditioned on staying in E forever.
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