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Introduction - Markov chains

• A Markov chain, written X1, X2, X3, · · · ∈ E is the
stochastic analogue of a discrete time dynamical system:

Xt+1 = F (Xt).

• If F (x) is fixed (deterministic) we have a dynamical
system

• If F (x) is chosen randomly at each iteration, but with
some fixed transition density

P

(
F (x) = y

)
= p(x, y),

then we have a Markov chain.

• Often only p(x, y) is specified - then there are many
possible choices of F (Borovkov + Foss, 1992)
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Introduction - ergodicity

• A Markov chain which visits all parts of its state space
E sufficiently frequently is called positive recurrent

• In this case, if it is not periodic, the chain settle down
over time to some equilibrium distribution π on E:

lim
t→∞

P

(
Xt ∈ A) = π(A)

lim
t→∞

1
t

t∑
s=1

f(Xs) =
∫
fdπ with probability 1.

• Both these results are interesting for Statistics (and
Physics, and . . . ) as a way of doing approximate
integration over a given probability distribution π in a
complicated space.
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Read Once CFTP

5 FF F F F F F F F6

π

7 8 94321

0X

Perfect sample from π

4



Read Once CFTP: a theorem

• P (x, dy) = P

(
F (x) ∈ dy

)
.

• Assume P
(
F is coalescent

)
= ε > 0, and write

µ(dy) = P

(
F (x0) ∈ dy |F is coalescent

)
• This gives P (x, dy) = (1− ε)Q(x, dy) + εµ(dy), and
πP = π.

• Theorem. We have

π = ε

∞∑
s=0

(1− ε)sµQs.
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Proof of Theorem

• Theorem. We have

π = ε

∞∑
s=0

(1− ε)sµQs. (1)

• Proof Using stationarity πP = π, we have

(1− ε)kπQk = (1− ε)k−1π(P − εµ)Qk−1

= (1− ε)k−1πQk−1 − ε(1− ε)k−1µQk−1

= · · · =

= π − ε
k∑
s=1

(1− ε)k−sµQk−s.

As identities between positive kernels, these are true
when applied to any bounded test function f : E → R.
Changing variables k − s→ s gives

(1− ε)k〈πQk, f〉 = 〈π, f〉 − ε
k−1∑
s=0

(1− ε)s〈µQs, f〉.

Since also
∣∣〈πQk, f〉∣∣ ≤ ‖f‖, it is now clear that we

obtain (1) by letting k →∞.
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Ways of coupling Markov chains I

• Very easy when state space is finite: E = {0, . . . , n}.

• 
P(Xt+1 = Xt ± 1) = 1/2 if 0 < Xt < n

P(Xt+1 = n− 1) = 1 if Xt = n

P(Xt+1 = 1) = 1 if Xt = 0.

• Here π is shte uniform distribution on {0, . . . , n}.

• Take Xt, X ′t to be independent copies of this chain.

• Can show that P(T <∞) = 1, so we have convergence!
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Ways of coupling Markov chains II

• For general state spaces E, use the Splitting technique.
(Nummelin, Athreya + Ney, Meyn + Tweedie,
Rosenthal)

• Let Xt and X ′t be two independent chains with
transition density p(x, y). Assume there exists a set
C ⊂ E (called a small set!) such that

min
x∈C

p(x, y) ≥ εµ(y),
∫
µ(y)dy = 1.

• Wait until both chains are simultaneously in C at some
time τ say.

• With probability ε, choose Y ∼ µ and make both chains
jump to Y , i.e. Xτ+1 = X ′τ+1 = Y .

• With probability 1− ε, setXτ+1 ∼ Q(Xτ , ·) = (1− ε)−1(p(Xτ , ·)− εµ(·))
X ′τ+1 ∼ Q(X ′τ , ·) = (1− ε)−1(p(X ′τ , ·)− εµ(·))
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Coupling without Analysis

• Normally at each iteration, we use a randomly
generated function Ft(x) such that Xt+1 = Ft(Xt).

• If Ft(x) = Ft(x′) holds for some x, x′, then there is the
possibility of coupling.

• Strategy: From F , generate a new random function
CY (F ) which has a higher chance of coupling.

• Definition: Let Y be independent of F , with
P(Y = y) = q(y) say.

CY (F )(x) =

Y if p(x,Y )q(F (x))
p(x,F (x))q(Y ) > U [0, 1]

F (x) otherwise.
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Theorem I

• Suppose the state space E can be entirely covered by a
finite union of 1-small sets C1, C2, . . . , CN say, and
suppose we can choose a probability density q in such a
way that

εiµi(·) ≤ inf
z∈Ci

p(z, ·) ≤ sup
z∈Ci

p(z, ·) ≤ γiq(·), i = 1, . . . , N,

where the γi are constants. Then if we make the
proposals Y1, Y2, . . . , we have

P

(
CYt ◦ · · · ◦ CY1(F ) has finite range eventually

)
= 1.

• The convergence is geometrically fast!
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Theorem II

• We are never sure that we have made enough proposals
Y1, Y2, . . . to guarantee that the new map
CYn ◦ · · · ◦ CY1(F ) has finite range. Fortunately, there
exists a different procedure which allows us to generate
a finitely coupled map with certainty.

• (Theorem) By using the “Dead Leaves Method” we can
generate in a finite number of iterations a finitely
coupled map with certainty!
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Theorem III

• Suppose we can couple the transition maps Ft(x) into
new maps F̃t(x) which have finite range with
probability 1. This only works if the transition density
p(x, y) is uniformly ergodic. Then any two Markov
chains X̃t and X̃ ′t defined by

X̃t+1 = F̃t(X̃t), X̃ ′t+1 = F̃t(X̃ ′t), X̃0, X̃
′
0 arbitrary

will couple successfully in a finite time. Moreover, all
Markov chains of the above type, where X̃0 ranges over
all points in the state space, must coalesce in a finite
time!
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Proof of Theorem I

Consider the basins of attraction

Basin(Y, F, ξ) =
{
x : p(x, Y )q(F (x)) > ξp(x, F (x))q(Y )

}
.

C  (f)f Y1

C  (C  (C  (C  (C  (f)))))C  (C  (f))Y2 Y1 Y Y Y Y YY 5 4 3 2 1
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Proof of Theorem II

Consider the core regions in each basin

Core(Y, ξ) =
{
x : x ∈ Basin(Y, F, ξ) for all F

}
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Read Once CFTP
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Assumptions for Read-Once CFTP

Assumption I A source of independent random update
functions f(x) exists, each satisfying∫

π(x)P
(
f(x) ∈ dy

)
dx = π(y)dy,

and the simulation of π should use updates of this type.
The target density π(x) is known up to a normalization
constant.

Assumption II The update functions f have a common
probability density p(x, y), which is known up to a
normalizing constant:

P

(
f(x) ∈ dy

)
= p(x, y)dy, x ∈ E.
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Building the maps Ft

(a) Resetting the state Let b(x) be a proposal density,
π(x)/b(x)→ 0 as x→∞

RB(x) =

B if π(B)b(x) > ψπ(x)b(B)

x otherwise,

where ψ ∼ U [0, 1].

(b) Coupling updates f1, f2, . . . Given x 7→ f(x)
(Assumption I), write

CY (f)(x) =

Y if p(x, Y )q(f(x)) > ξp(x, f(x))q(Y )

f(x) otherwise,

where ξ ∼ U [0, 1] independently, and p(x, y) comes from
Assumption II. Choose a finite IID sequence
Y = (Y∞,Y∈, . . . ,Yτ ) from q.

CY(f) := CY1,Y2,...,Yτ (f) = CYτ ◦CYτ−1 ◦ · · · ◦ CY2 ◦CY1(f).

(c) Definition of maps Ft Choose f1, . . . , fm, and put

F (x) = CYm(fm) ◦ · · · ◦ CY1(f1) ◦RB(x),
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Effect of Independence Sampler

Which is more likely? For each pair (x,B), the map

RB(x) =

B if π(B)b(x) > ψπ(x)b(B)

x otherwise,

chooses the most likely configuration
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Overview of compound map F

b
π

B

RB C  (f  )Y1 1 C  (f  ) C  (f  ) C  (f  ) C  (f  ) C  (f  )Y Y Y Y Y2 3 4 5 62 4 5 63

F

K B
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Pump Example (Autogamma)

• Let x = (β, λ1, . . . , λ10), simulate

π(x) = exp

{
(10α+ γ − 1) log β − δβ

+
10∑
k=1

(
(sk + α− 1) log λk − (β + tk)λk

)}
,

• Gibbs sampler: One sweep is
f : (β, λ1, . . . , λ10) 7→ (β′, λ′1, . . . , λ

′
10), where

β′ ∼ π0(· |λ1, . . . , λ10) = Γ(γ + 10α, δ +
10∑
k=1

λk),

λ′k ∼ πk(· |β′) = Γ(α+ sk, β
′ + tk), k = 1, . . . , 10.

• Transition density is

p(β, λ1, . . . , λ10; b, l1, . . . , l10) = π0(b |λ1, . . . , λ10)
10∏
k=1

πk(lk | b).
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Pump Example: Constructing RB(x)

• Take B = (B0, . . . , B10) such that B0 ∼ Γ(γ, δ),
Bk ∼ Γ(α,B0) for k ≥ 1. Then

b(x)/π(x) = Γ(γ)−1Γ(α)−10δγ exp
(
−

10∑
k=1

(sk log λk − tkλk)
)
.

• Consequently,

KB =
{
x :

10∑
k=1

(sk log λk − tkλk) ≥ − logψ

+
10∑
k=1

(sk logBk − tkBk)
}
.

• Simpler to take |λ| = λ1 + · · ·+ λ10,

KB ⊂
{

(β, λ1, . . . , λ10) : 0 ≤ |λ| ≤
(

logψ

−
10∑
k=1

(sk logBk − tkBk)
)
/max

j
tj

}
.
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Pump Example: Constructing CY (f)

• Take Y ∼ q where

q(y0, y1, . . . , y10) = π0(y0 |λ∗1, . . . , λ∗10)
10∏
k=1

πk(yk | y0),

• After simplification,

CY (f)(x) =

Y if exp
(

(β′ − Y0)(|λ| − |λ∗|)
)
> ξ,

(β′, λ′1, . . . , λ
′
10) otherwise.

• Thus

Basin(Y, f, ξ) =
{
x :
(
ψ0 − (δ + |λ|)Y0

)(
|λ| − |λ∗|

)
> log ξ

}
,

• After simplification,

Basin(Y, f, ξ) =

{
x : |λ| ∈

[−b−√b2 − 4ac
2a

,
−b+

√
b2 − 4ac

2a

]}
,

where a = Y0, b = log ξ − Y0(|λ∗| − δ) and
c = δ(log ξ − Y0 |λ∗|)− ψ0.
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