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ABSTRACT

We consider a simple and widely used method for evaluating quasistationary
distributions of continuous time Markov chains. The infinite state space is re-
placed by a large, but finite approximation, which is used to evaluate a candidate
distribution.

We give some conditions under which the method works, and describe some
important pitfalls.
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1 INTRODUCTION

Various models used in applied probability feature a lifetime τ , after which their behaviour
becomes ‘uninteresting’. For example, epidemics usually end after a certain (perhaps long)
time. Chemical reactions may stop, having exhausted one of the reactants. Market options
expire. Endangered species become extinct.

When the model involves a Markov chain, it has proved useful to study the associated
family of so-called quasistationary distributions. These probability distributions typically arise
in the following generic way. Consider a Markov chain (Xt) on a state space S, together with
a transient irreducible class C ⊆ S for which the first exit time τ from C is almost surely
finite. What happens to (Xt) after time τ is not of immediate interest; the states outside C are
amalgamated into one single absorbing set {0}.

A quasistationary distribution (QSD) is a probability measure m = (mi) on C related to
the process (Xt) by the equation

Pr(Xt = j | τ > t,X0 ∼ m) = mj ,

where the notation X0 ∼ m means that X0 has distribution m. QSDs exist and are unique
whenever C is finite (see Darroch and Seneta (1967)). In the infinite case, it is natural to
ask whether the class C may be replaced by a large but finite subset C(n), such that the
corresponding QSD approximates one sought after on C. Indeed, such a technique is commonly
used for the numerical evaluation of QSDs. A major aim of the present paper is to point out
that this strategy does not always work.

Complications arise in many ways. The class C may admit zero, one, or a continuum of
QSDs, the birth-death process being a case in point (van Doorn (1991)). In addition, the
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approximate QSDs may not converge as C(n) increases, or may converge to the wrong QSD
on C.

We concentrate on continuous time Markov chains. The discrete time results which pro-
vided the impetus for this work are described in Seneta (1967). We comment further on the
relationship between continuous time and discrete time in Section 7. A complete account of
the early truncation literature may be found in Seneta (1981).

2 NOTATION AND ASSUMPTIONS

Let P (t) = (pij(t)) denote the transition probabilities of a continuous time Markov chain (Xt)
with countable state space S, that is, pij(t) = Pr(Xt = j | X0 = i), i, j ∈ S. The associated
q-matrix, given by qij = limt→0+(pij(t)− δij)/t, is assumed stable: −qii <∞. The state space
is the union of an irreducible class C and a single absorbing state: S = {0} ∪ C. The hitting
time of {0} (or first exit time from C) is denoted τ .

Henceforth, the transition matrix is assumed minimal (Anderson (1991)). The reason for
this will become apparent following Lemma 2.

A quasistationary distribution is an example of a λ-invariant measure, that is, a measure
(mi) on C satisfying the equation∑

i∈C
mipij(t) = e−λtmj , j ∈ C, t ≥ 0 (1)

for some real number λ ≥ 0. In fact, it has been shown by Nair and Pollett (1993) that
quasistationary distributions are characterised as the finite λ-invariant measures on C for P
normalised so as to have probability mass 1. In contrast, a positive vector (xj) is called a
λ-invariant vector if it satisfies ∑

j∈C
pij(t)xj = e−λtxi, i ∈ C.

Tweedie (1974) showed that the numbers (mj) defined by (1) always satisfy∑
i∈C

miqij = −λmj , j ∈ C (2)

in the case where P is the minimal process. Pollett (1986) gave necessary and sufficient condi-
tions for the converse to hold.

In the remainder of this section, we recall some further results that we will need. All these
facts may be found in Anderson (1991).

There exists a number λ∗ such that the integrals∫ ∞
0

eλtpij(t) dt, i, j ∈ C (3)

all converge for λ < λ∗ and diverge for λ > λ∗. It is given by

λ∗ := − lim
t→∞

t−1 log pii(t), (independently of i ∈ C.)

Now suppose that λ = λ∗. If (3) diverges, the process (Xt) is called λ∗-recurrent and there
exists an essentially unique measure (mi) satisfying (1). An essentially unique λ∗-invariant
vector (xi) also exists.

Furthermore, the process is called λ∗-positive recurrent if
∑
i∈C mixi < ∞. In that case,

we have the limit
lim
t→∞

Pr(Xt = j | τ > t,X0 = i) = mj/
∑
k∈C

mk (4)

which defines both a limiting conditional distribution and QSD (Vere-Jones (1969)) when the
λ∗-invariant measure (mj) is finite. In particular, this is true whenever the set C is finite, on
account of the Perron-Frobenius theorem (Darroch and Seneta (1967)).
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3 APPROXIMATING QUASISTATIONARY DISTRIBU-

TIONS

Let (C(n)) be an increasing sequence of finite subsets of C such that

∅ ⊂ C(1) ⊆ · · · ⊆ C =
⋃
n

C(n). (5)

The truncated q-matrix associated with C(n),
(
q

(n)
ij , i, j ∈ S

)
, is defined by

q
(n)
ij =

{
qij , if i, j ∈ C(n),

0, otherwise.

Associated with the matrix (q(n)
ij ) is a unique (and hence minimal) process with transition

probabilities p(n)
ij (t) = Pr(Xt = j, τ (n) > t | X0 = i), i, j ∈ C(n), where τ (n) is the first exit

time of X from C(n). Since limn→∞ ↑ τ (n) = τ , the monotone convergence theorem also implies
(see Theorem 2.2.14 of Anderson (1991)) that

lim
n→∞

↑ p(n)
ij (t) = pij(t), i, j ∈ C, t ≥ 0. (6)

Lemma 1 There exists a sequence (C(n)) of finite sets satisfying (5), such that for all n, C(n)

is irreducible for (p(n)
ij (t)).

Proof: If C is finite, set C(n) = C for all n ≥ 1. Otherwise, enumerate the state space so that
state i has a unique number ni, set C(1) = {a} where a ∈ C, and recursively construct C(n+1)

from C(n) as follows. Note that C(1) is trivially an irreducible class of (p(1)
aa (t)) > 0.

Suppose that C(n) is finite and irreducible with respect to (p(n)
ij (t)). Now, there exist states

i′, j′ ∈ C(n) together with states i′′, j′′ ∈ C \ C(n) such that qi′i′′ > 0 and qj′′j′ > 0, for
otherwise C would be reducible with C(n) closed. Choose b ∈ C \ C(n) with nb = min{nk :
k ∈ C \ C(n)}. Then, since C is irreducible, there exist finite sequences (ik, k = 1, . . . , l) and
(jk, k = 1, . . . , l′) in C such that

qi′′i1qi1i2 · · · qilb > 0 and qbj1qj1j2 · · · qjl′ j′′ > 0.

The set C(n+1) is then taken to be

C(n) ∪ {b, i′, i′′, i1, i2, . . . , il, j1, j2, . . . , jl′ , j′′, j′}.

C(n+1) is irreducible and finite.
Thus, the process, (Xt), can move from C(n) to b and back again in a finite time with

positive probability by traversing the sequence of states

i′, i′′, i1, . . . , il, b, j1, . . . , jl′ , j
′′, j′.

The enumeration (ni) is needed to ensure that each state in C is accounted for in some C(n).
Lemma 1 is the direct analogue of Theorem 3 in Seneta (1968). There, Seneta proceeds

essentially along the same lines as the proof above, except that no ordering is imposed upon C.
Without this, the procedure for constructing the sequence (C(n)) does not appear to guarantee⋃
n C

(n) = C. For example, suppose that C has a lattice-like structure, C = C1 × C2 where
C1 = {1, 2, . . .} and C2 = {1, 2}. If transitions are permitted from (i, j) to (i, 3− j), from (i, j)
to (i± 1, j) for i > 0 and from (0, j) to (1, j), then, despite C being irreducible, it is possible to
choose (C(n)) to be the sequence given by C(n) =

{
(i, 1) | i = 1, 2, . . . , n

}
. Whilst being strictly

increasing and irreducible, C(n) only approximates half of C. This problem is easily rectified
by the enumeration (ni) which ensures each state’s eventual inclusion in an approximating
subclass.

3



Now set
λ(n) = − lim

t→∞
t−1 log p(n)

ii (t). (7)

From the previous section, we have the limit

lim
t→∞

Pr(Xt = j | τ (n) > t) = m
(n)
j , i, j ∈ C(n),

where the collection m(n) := (m(n)
j , j ∈ C(n)) satisfies∑

i∈C(n)

m
(n)
i q

(n)
ij = −λ(n)m

(n)
j , j ∈ C(n),

∑
i∈C(n)

m
(n)
i = 1. (8)

In essence, the remainder of this paper looks at the problem of what happens when we let n
tend to infinity on both sides of (8). Alternatively, we are asking whether two different ways of
approximating the set {τ =∞} give the same result, at least when the limit (4) exists:

lim
n→∞

lim
t→∞

Pr(Xt = j | τ (n) > t) ?= lim
t→∞

lim
n→∞

Pr(Xt = j | τ (n) > t).

We shall see that convergence of the normalised λ(n)-invariant measures of the truncated process
to a λ-invariant probability distribution is not assured. In other words, it is not always possible
to arbitrarily swap the order of limits in the above expression.

4 CONVERGENCE

If we are to expect any kind of convergence to occur as n→∞ in (8), we will first require λ(n)

to converge.

Lemma 2 λ∗ = limn→∞ ↓ λ(n).

Proof: By (6), we have

λ(n) = − lim
t→∞

t−1 log p(n)
ii (t)

≥ − lim
t→∞

t−1 log p(n+1)
ii (t) = λ(n+1)

≥ − lim
t→∞

t−1 log pii(t) = λ∗

and hence λ∗ ≤ limn→∞ λ(n). On the other hand, the function t 7→ − log p(n)
ii (t) is subadditive,

so that the limit in (7) coincides with the infimum over t > 0. Therefore

−t−1 log p(n)
ii (t) ≥ inf

t>0
{−t−1 log p(n)

ii (t)} = λ(n) ≥ lim
k→∞

λ(k).

Letting n→∞ on the left implies that −t−1 log pii(t) ≥ limk→∞ λ(k), and finally

λ∗ = − lim
t→∞

t−1 log pii(t) ≥ lim
n→∞

λ(n).

Note that the minimality assumption on (pij(t)) is crucial here; otherwise, we can only say
that limn→∞ ↓ λ(n) ≥ λ∗.

For the next result, we recall that a non-trivial measure is λ-subinvariant if∑
i∈C

mipij(t) ≤ e−λtmj , j ∈ C (9)

for some λ ≥ 0. For the minimal process, the condition (9) is equivalent (see Tweedie (1974))
to the q-matrix condition (2) in which the ‘=’ sign is replaced by ‘≤’.

The following lemma demonstrates the existence of a subsequence of (m(n)) whose elements
approximate a λ∗-subinvariant measure on C for P .
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Lemma 3 For each a ∈ C, there exists a subsequence (n′) such that

(i) m′j := limn′→∞m
(n′)
j /m

(n′)
a (j ∈ C) is λ∗-subinvariant;

(ii) either mj := limn′→∞m
(n′)
j (j ∈ C) is identically zero, or it is λ∗-subinvariant (and the

measure is finite).

Proof:

(i) Since
m

(n)
j p

(n)
ja (t) ≤

∑
i

m
(n)
i p

(n)
ia (t) = e−λ

(n)tm(n)
a ≤ m(n)

a

holds for j, a ∈ C(n), it follows by (6) that for fixed t > 0 and all k ≥ 0, m(n+k)
j /m

(n+k)
a ≤

1/p(n)
ja (t) <∞. Thus, there are bounds, (Uj), such that 0 < u

(k)
j := m

(k)
j /m

(k)
a < Uj <∞

for all j ∈ C. By Cantor’s diagonal argument, there exists a subsequence (n′) of (n) such
that the numbers m′j defined by (i) exist, simultaneously for all j ∈ C. Finally, Fatou’s
lemma gives ∑

i

m′ipij(t) =
∑
i

(
lim
n′→∞

u
(n′)
i p

(n′)
ij (t)

)
≤ lim

n′→∞

∑
i

u
(n′)
i p

(n′)
ij (t)

= lim
n′→∞

(
e−λ

(n′)tu
(n′)
j

)
= e−λ

∗tm′j .

Since m′a = 1, we must have m′j ≥ eλ
∗tm′apaj(t) > 0.

(ii) Since 0 < m
(n)
j ≤ 1 for n ≥ 1, j ∈ C, a subsequence (n′) can be found such that

mj := limn′→∞m
(n′)
j exists simultaneously for all j ∈ C. If the resulting measure (mj)

is not identically zero, Fatou’s lemma shows that it satisfies (9), and as above mj > 0 for
all j.

Lemma 3 provides an alternative proof of the existence of a λ∗-invariant measure to that
given by Theorem 2 in Kingman (1963). In principle, we now have the means to approximate
ratios of λ∗-subinvariant quantities, e.g.,

lim
n′→∞

m
(n)
j

m
(n)
i

= lim
n′→∞

m
(n)
j /m

(n)
a

m
(n)
i /m

(n)
a

=
m′j
m′i

, i, j ∈ C,

which allows us to approximate a quasistationary distribution of a process up to a constant
multiple.

While part (i) of the lemma always works, though it might give an infinite measure, part (ii)
seems to be closely connected to the existence of finite λ∗-subinvariant measures. Unfortunately,
these do not always exist; this has to do with a second parameter λ∗ ≤ λ∗, studied in Jacka
and Roberts (1996), and defined by

λ∗ := − lim
t→∞

t−1 log Pr(τ > t|X0 = i) independently of i ∈ C

when the limit exists. This number happens to be the supremum of those λ for which a finite
λ-subinvariant measure exists. It follows that a necessary condition for the measure (m′j) in
part (ii) of the lemma to be nonzero is that λ∗ = λ∗. The paper (Jacka and Roberts (1996))
has some sufficient conditions which guarantee this, the most important being that the limiting
conditional distribution (4) exist.
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If, in addition, we are able to determine that the λ∗-subinvariant measure is unique, then we
need not be concerned with finding convergent subsequences of (m(n)), for then all subsequences,
and hence the entire sequence, will converge to the desired limit. The practical consequence
of this is that any irreducible truncation C(n), for n large enough, will produce an adequate
estimate. A sufficient condition for this is λ∗-recurrence of (Xt).

Theorem 4 Suppose that (pij(t)) is λ∗-positive recurrent. Then for any a ∈ C,

m′j := lim
n→∞

m
(n)
j /m(n)

a

exists and is the essentially unique λ∗-invariant measure on C for P (t). Moreover, it satisfies

lim
t→∞

Pr(Xt = j | τ > t,X0 = i) = m′j/
∑
i∈C

m′i

where the righthand side is interpreted as zero if
∑
i∈C m

′
i =∞.

Proof: By general theory (Anderson (1991)), λ∗-recurrence guarantees that there exists pre-
cisely one λ∗-subinvariant measure which is, in fact, λ∗-invariant. It is therefore, up to constant
multiples, the one and only limit point (componentwise) of the set of measures ((m(n)

j /m
(n)
a ), n ≥

1), by Lemma 3. This proves the existence of the limit, (m′j), and the second statement is well
known (Anderson (1991), Proposition 5.2.10).

Note that this theorem does not imply that m(n)
j → m′j/

∑
i∈C m

′
i as n→∞. This is ideally

what we would like to have happen. However, if limn→∞m
(n)
j exists, it will be a multiple of

m′j/
∑
i∈C m

′
i. More precisely, Fatou’s lemma together with (ii) of Lemma 3 allows us to deduce

that m(n)
j → α · (m′j/

∑
i∈C m

′
i) where 0 ≤ α ≤ 1.

As commonly encountered processes are not always λ∗-positive recurrent, the next result
may be more useful in some circumstances.

Theorem 5 Suppose that (pij(t)) satisfies the Feller-Dynkin condition,

(FD) limi→∞ pij(t) = 0 for all j ∈ C, t > 0.

If, for some (and then all) j ∈ C,

mj := lim sup
n→∞

m
(n)
j > 0, (10)

then rj := mj/
∑
i∈C mi is a quasistationary distribution associated with λ∗.

Proof: Take a subsequence (n′) such that limn′→∞m
(n′)
j = mj . Such a sequence always

exists. An application of Fatou’s lemma yields

lim
n′→∞

∑
i∈C

m
(n′)
i = lim inf

n′→∞

∑
i∈C

m
(n′)
i

= 1

≥
∑
i∈C

lim inf
n′→∞

m
(n)
i

=
∑
i∈C

lim
n′→∞

m
(n)
i

=
∑
i∈C

mi > 0,

whilst Lemma 3 shows that the (subprobability) measure (mj) is λ∗-subinvariant. Also,

e−λ
(n′)tm

(n′)
j =

∑
i

m
(n′)
i p

(n′)
ij (t)

≤
∑
i

m
(n′)
i pij(t)

=
∑
i

(
m

(n′)
i −mi

)
pij(t) +

∑
i

mipij(t).
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By (FD), the first sum on the right can be made arbitrarily small for large n′. Take a finite set
K such that pij(t) < ε/4 whenever i /∈ K. Then for n′ large enough, |m(n′)

i −mi| < ε/2 for all
i ∈ K, so that ∣∣∣∣∣∑

i∈C

(
m

(n′)
i −mi

)
pij(t)

∣∣∣∣∣ ≤ ∑
i∈K

∣∣∣m(n′)
i −mi

∣∣∣ pij(t)
+
∑
i/∈K

∣∣∣m(n′)
i −mi

∣∣∣ pij(t)
< ε/2 + 2 · ε/4 = ε.

As a result, we find as n′ →∞,

e−λ
∗tmj ≤

∑
i∈C

mipij(t),

which implies that the measure (mj) is λ∗-invariant, and (rj) is a quasistationary distribution.

Note that the problem of finding a suitable convergent subsequence of (m(n)) remains. Also,
the caveat discussed immediately following the proof of Theorem 4 also applies to Theorem 5,
with n′ substituted for n there.

The condition (FD) in the statement of Theorem 5 could be replaced (though we won’t
prove it here) by the tightness condition,

(T) For each ε > 0, there is a finite K ⊂ C such that, for all n large enough,

lim
t→∞

Pr(Xt ∈ K | τ (n) > t) =
∑
j∈K

m
(n)
j ≥ 1− ε,

but this seems more difficult to check, unless one has good error bounds on the differences
(m(n)

j − mj), or the behaviour of the process (Xt) is well known. However, tightness does
give rise to the situation where a subsequence (m(n′)) which converges to a proper probability
distribution on C exists.

5 EXAMPLE: BIRTH-DEATH PROCESSES

Consider a birth-death process (BDP) on S = {0} ∪ {1, 2, . . .}, with birth rates λi > λ0 = 0
and death rates µi > µ0 = 0. Suppose that the hitting time of {0} is a.s. finite for the minimal
process; in other words, we suppose that

A :=
∞∑
k=1

1
λkπk

=∞,

with potential coefficients π1 = 1 and πk = πk−1(λk−1/µk) if k > 1. In this situation, we can
take C(n) = {1, . . . , n}, and (q(n)

ij ) represents the n × n north-west truncation of the original
q-matrix.

Cavender (1978) showed that the sequence (m(n)
j ) converges as n → ∞. Kijima and

Seneta (1991) refined this work by proving that m(n)
j → mj as n→∞ where m = (mj , j ∈ C)

is the normalised left eigenvector corresponding to the largest real eigenvalue of (qij) on C.
Here, we consider the BDP in light of the preceding results.

In terms of the birth-death polynomials Qi(x) defined by Q0(x) = 0, Q1(x) = 1, and for
i > 1,

µiQi−1(x)− (λi + µi)Qi(x) + λiQi+1(x) = −xQi(x),
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we can write m(n)
j = µ−1

1 γnπjQj(γn), (1 ≤ j ≤ n), where −γn (= −λ(n)) is the largest real

eigenvalue of (q(n)
ij ). Now Lemma 2 and the continuity in x of the polynomials immediately

shows that
mj := lim

n→∞
m

(n)
j = µ−1

1 γπjQj(γ). (Here, γ = λ∗).

When γ > 0, we are in the situation where the measures (m(n)
j ) satisfy condition (T): since∑

i∈C mi = 1 (van Doorn (1991)), we take K such that
∑
i∈K mi > 1 − ε/2 and for n large

enough, supn>N(K) maxj∈K |m(n)
j −mj | < ε/2|K|. Thus∑

j∈K
m

(n)
j ≥

∑
j∈K

mj −
∑
j∈K
|m(n)

j −mj | > 1− ε/2− |K| · ε/2|K| = 1− ε, when n > N(K).

6 EXAMPLE: BRANCHING PROCESSES

Again, let S = {0, 1, 2, . . .} and consider a subcritical, Markov branching process on S, with
offspring law (pi, i ≥ 0) such that p0 > 0, p1 = 0 and

∑
i>1 pi > 0. The q-matrix is given by

qij =


0, if 0 ≤ j < i− 1 or i = 0,
−ρi, if j = i > 0,
ρipj−i+1, if 0 ≤ j = i− 1 or j > i > 0,

where ρ > 0 is a parameter determining the rate of process activity. The set C = {1, 2, . . .}
is a transient, irreducible class. On account of the upper triangular form of the q-matrix, the
components of a λ-invariant measure, u(λ) = (ui(λ), i ∈ C), form a sequence of polynomials
given by the recurrence,

u1(λ) ≡ 1 and

uj+1(λ) =
(ρj − λ)uj(λ)− ρ

∑j−1
i=1 ipj−i+1ui(λ)

ρ(j + 1)p0
, j > 0,

which ensures essential uniqueness (per value of λ). Pakes (1994) has shown that a λ-invariant
measure exists for each λ ∈ (0, λ∗] and that each such measure is finite. Thus, ui(λ) > 0 for
all λ ∈ (0, λ∗] and i ≥ 1. Also, by using Theorem 1.5.7 and Theorem 3.3.1 of Anderson (1991),
the minimal process can be shown to satisfy (FD). Taking C(n) = {1, . . . , n}, this means that
m

(n)
j /m

(n)
1 converges to a λ∗-invariant measure for some subsequence (n′). In turn, uniqueness

of the λ∗-invariant measure shows that m(n′)
j /m

(n′)
1 must converge to uj(λ∗) regardless of the

subsequence chosen. Thus,

lim
n→∞

m
(n)
j

m
(n)
1

= uj(λ∗).

It remains to check the condition (10). First, note that m(n) = (m(n)
j , j = 1, 2, . . . , n) given

by

m
(n)
j =

uj(λ(n))∑n
i=1 ui(λ(n))

, j ∈ C

is the solution of (8). The characteristic polynomial of Q(n) =
(
qij , i, j ∈ C(n)

)
is given by

chQ(n)(x) := det(Q(n) − xIn) = (−p0)n(n+ 1)!un+1(−x)

where In is the n× n identity matrix. Thus, the roots of un+1(−x) = 0 are the eigenvalues of
Q(n). The n× n matrix, T (n) = I + (Q(n)/q(n)), where q(n) = max{−q(n)

ii : i = 1, 2, . . . , n} =
ρn, is substochastic and has eigenvalues κ(n)

1 , . . . , κ
(n)
n , ordered so that

0 < |κ(n)
1 | ≤ . . . ≤ |κ(n)

n | < 1.
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Also,

chT (n)(κ) := det(T (n) − κIn)

= det
(

1
q(n)

(
Q(n) + q(n)(1− κ)In

))
=

1
(q(n))n

det
(
Q(n) + q(n)(1− κ)In

)
=

1
(q(n))n

chQ(n)

(
q(n)(κ− 1)

)
=

(−p0

q(n)

)n(n+ 1)!un+1(λ)

where
λ = q(n)(1− κ). (11)

Once again, we have a one-to-one correspondence through (11) between the eigenvalues of T (n)

and those of Q(n).
From the Perron-Frobenius theorem, κ(n)

n is real, simple and, in modulus, the largest eigen-
value of T (n). Therefore, q(n)(κ(n)

n − 1) is, in its real part, the largest eigenvalue of Q(n) which
ensures that q(n)(1−κ(n)

n ) is the smallest, real root of un+1(λ) = 0. Hence, λ(n) = q(n)(1−κ(n)
n ).

Next, since uj(λ∗) > 0 for all j ≥ 2 and uj(λ) is continuous, it follows that uj(λ) ≥ 0
is monotonically decreasing in the interval [λ∗, λ(j−1)]. The same is trivially true of u1(λ)
which maintains the constant value 1. By Lemma 2, λ(n) ↘ λ∗ as n → ∞, and so uj(λ(n)) is
monotonically increasing up to uj(λ∗) as n→∞ for all j ≥ 1. Furthermore,

n∑
i=1

ui(λ(n−1)) ≤
n+1∑
i=1

ui(λ(n)) ≤ . . . ≤
∞∑
i=1

ui(λ∗) <∞. (12)

Therefore,

m
(n)
1 =

u1(λ(n−1))∑n
i=1 ui(λ(n−1))

=
1∑n

i=1 ui(λ(n−1))

≥ 1∑∞
i=1 ui(λ∗)

> 0.

It follows that condition (10) is satisfied and the conclusions of Theorem 5 are valid. In other
words, m(n)

j → α(mj/
∑
i∈C mi) as n → ∞ for some α ∈ (0, 1]. We can improve upon this by

applying dominated convergence to (12) which shows that α = 1 and

lim
n→∞

m
(n)
j =

mj∑
i∈C mi

.

Thus, we may use m(n), for large enough n, to approximate the quasistationary distribution of
a subcritical branching process. See Kijima (1993) for a more general discussion.

7 SOME FINAL REMARKS

In order to derive the results for the two examples presented, it is necessary to take the structure
of the q-matrix into account. Without this, Theorems 4 and 5 lose some of their practical appeal.
They do, however, provide insight into the continuous time case. We finish with some comments
concerning the discrete time case.

Parallel results to those presented here exist for discrete time Markov chains. The reader
is referred to Lemma 3 and Theorem 4 which form the basis for the analogy. Compared to
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discrete time, matters are more complicated here. Indeed, there is the possibility of multiple
transition functions with the same q-matrix, which has no parallel in discrete time. According
to Lemma 2, if the transition function (pij(t)) is non-minimal, the sequence of measures (m(n))
(suitably normalized) will still only converge to a λ∗-subinvariant measure for the minimal
transition function (fij(t)).

We also remark that the methods employed here, being based on ideas of compactness of
measures related to weak and vague convergence, generalize very easily to more general state
spaces. As an example, we state a continuous state space version of Theorem 5, whose proof
proceeds exactly as for Theorem 5, mutatis mutandis.

Theorem 6 Let X be a Markov process on a locally compact metric space C whose transition
function Pt(x, dy) maps the space of continuous functions vanishing at infinity into itself (Feller-
Dynkin property). Suppose that for some sequence of subsets C(n) ↑ C, the n-th killed process
has a quasistationary distribution m(n) with minimal support C̄(n), the closure of C(n). If there
exists a positive continuous function f with compact support in C such that

lim sup
n→∞

∫
C(n)

fdm(n) > 0,

then m(n) converges vaguely along a subsequence to a multiple of some quasistationary distri-
bution for Pt.

For weak and vague convergence, see Billingsley (1968).
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