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Aims of this talk

In this talk, I shall present loosely some recent ideas related to Perfect
Simulation, including:

• what Read-Once CFTP means

• some old and new coupling constructions

• an example of perfect simulation

PS is still at the beginning, and new methods are discovered regularly...
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MCMC and Perfect Samples

In MCMC, we commonly have two distinct goals:

Simulation Integration

P(A |B) =

∫
A

P(B |ω)P(dω)/P(B)

PS solves the simulation problem completely,and reduces integration
problems to Classical Statistics.



Building Markov chains
There are several equivalent definitions for Markov chains. For PS, we

use a computational definition:

A sequenceX1,X2,. . . is a Markov chain if there exists an IID series of
random functionsF1(x), F2(x),. . . such that

F1(X1) = X2, F2(X2) = X3, . . . , Fk(Xk) = Xk+1
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Consider the chain over a larger time scale: the stationary densityπ
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The stationary density
Consider the chain over a larger time scale: the stationary densityπ

satisfiesπP = π, where

P (x, dy) = P(Ft(x) ∈ dy) for all t.

After reordering the occupied states, we get:
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How to find the perfect samples
• Trace all possible paths under the mappingsF1, F2,. . . , looking for

coalescencewithin m steps:

• LetG1(x),G2(x),. . . be defined for allx by:

G1(x) = Fm(Fm−1(· · ·F1(x) · · · ))
G2(x) = F2m(F2m−1(· · ·Fm+1(x) · · · ))

and set

T1 = min{u ≥ 0 : Gu(x) = Gu(y) for all x, y}
Tk+1 = min{u ≥ Tk : Gu(x) = Gu(y) for all x, y}



How to find the perfect samples
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The fundamental identity
Let ε = P(T1 ≤ 1) and write

P(G1(x) ∈ dy) = (1− ε)P(G1(x) ∈ dy |T1 > 1) + εP(G1(x) ∈ dy |T1 ≤ 1)

= (1− ε)Q(x, dy) + εµ(dy).

Thenπ = ε
∑∞

s=0(1− ε)sµQs.
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The fundamental identity
Let ε = P(T1 ≤ 1) and write

P(G1(x) ∈ dy) = (1− ε)P(G1(x) ∈ dy |T1 > 1) + εP(G1(x) ∈ dy |T1 ≤ 1)

= (1− ε)Q(x, dy) + εµ(dy).

Thenπ = ε
∑∞

s=0(1− ε)sµQs.
Proof. Using stationarityπP = π, we have

(1− ε)kπQk = (1− ε)k−1π(P − εµ)Qk−1

= (1− ε)k−1πQk−1 − ε(1− ε)k−1µQk−1

= · · · =

= π − ε
k∑
s=1

(1− ε)k−sµQk−s.

Let k →∞, then left side goes to zero.



How to ensure coupling occurs

Again assume that we have an IID sequenceF1, F2,. . . of random maps
satisfying

P (x, dy) = P(Ft(x) ∈ dy) for all t. (1)

With Ft(x) arbitrary, coalescence of Markov chain sample paths need not
ever happen. We must modify the maps subject to preserving the

condition (1).
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Modifying the updates

• Normally at each iteration, we use a randomly generated function
Ft(x) such thatXt+1 = Ft(Xt).

• If Ft(x) = Ft(x
′) holds for somex, x′, then there is thepossibilityof

coupling.

• Strategy: FromF , generate a new random functionCY (F ) which has
a higher chance of coupling.

• Definition: Let Y be independent ofF , with P(Y = y) = q(y) say.

CY (F )(x) =

{
Y if p(x,Y )q(F (x))

p(x,F (x))q(Y ) > U [0, 1]

F (x) otherwise.



Modifying the updates

C  (f)f Y1

C  (C  (C  (C  (C  (f)))))C  (C  (f))Y2 Y1 Y Y Y Y YY 5 4 3 2 1
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Modifying the updates

C  (f)f Y1

C  (C  (C  (C  (C  (f)))))C  (C  (f))Y2 Y1 Y Y Y Y YY 5 4 3 2 1

We call the triangles catalysts. Clickhere.

http://www.lbreyer.com/coupling.html


Why it works

• In the formula

CY (F )(x) =
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Why it works

• In the formula

CY (F )(x) =

{
Y if p(x,Y )q(F (x))

p(x,F (x))q(Y ) > U [0, 1]

F (x) otherwise.

fix x and defineΠ(y) = p(x, y),X = F (x) andX ′ = CY (F )(x).

• We get

X ′ =

{
Y if Π(Y )q(X)

Π(X)q(Y ) > U [0, 1]

X otherwise

• Therefore, sinceΠ(dy) = P(X ∈ dy) by assumption, it follows that
P(X ′ ∈ dy) = Π(dy) also.



Extensions

Y
s

Y
s+12

• At every update, let the catalystYt come from an independent Markov
chain with identical transition probabilities. Great for Gibbs samplers!

• We have the formula

‖P(Xt ∈ ·)− π‖TV ≤ E
t∏

s=0

(
1− p(Xs, Ys+1)p(Ys, Xs+1)

p(Xs, Xs+1)p(Ys, Ys+1)

)
+

,



Pump Example (Autogamma)

• Let x = (β, λ1, . . . , λ10), simulate

π(x) = exp

{
(10α + γ − 1) log β − δβ

+

10∑
k=1

(
(sk + α− 1) log λk − (β + tk)λk

)}
,
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• Let x = (β, λ1, . . . , λ10), simulate

π(x) = exp

{
(10α + γ − 1) log β − δβ

+

10∑
k=1

(
(sk + α− 1) log λk − (β + tk)λk

)}
,

• Gibbs sampler: One sweep isf : (β, λ1, . . . , λ10) 7→
(β′, λ′1, . . . , λ

′
10), where

β′ ∼ π0(· |λ1, . . . , λ10) = Γ(γ + 10α, δ +

10∑
k=1

λk),

λ′k ∼ πk(· | β′) = Γ(α + sk, β
′ + tk), k = 1, . . . , 10.



Pump Example: coupling
• Transition density is

p(β, λ1, . . . , λ10; b, l1, . . . , l10) = π0(b |λ1, . . . , λ10)

10∏
k=1

πk(lk | b).



Pump Example: coupling
• Transition density is

p(β, λ1, . . . , λ10; b, l1, . . . , l10) = π0(b |λ1, . . . , λ10)

10∏
k=1

πk(lk | b).

• TakeY ∼ q where

q(y0, y1, . . . , y10) = π0(y0 |λ∗1, . . . , λ∗10)

10∏
k=1

πk(yk | y0),



Pump Example: coupling

• After simplification,

CY (f )(x) =

Y if exp
(

(β′ − Y0)(|λ| − |λ∗|)
)
> ξ,

(β′, λ′1, . . . , λ
′
10) otherwise.



Pump Example: coupling

• After simplification,

CY (f )(x) =

Y if exp
(

(β′ − Y0)(|λ| − |λ∗|)
)
> ξ,

(β′, λ′1, . . . , λ
′
10) otherwise.

• Thus

Basin(Y, f, ξ) =
{
x :
(
ψ0 − (δ + |λ|)Y0

)(
|λ| − |λ∗|

)
> log ξ

}
,



Pump Example: coupling

• After simplification,

Basin(Y, f, ξ) =

{
x : |λ| ∈

[−b−√b2 − 4ac

2a
,
−b +

√
b2 − 4ac

2a

]}
,

wherea = Y0, b = log ξ−Y0(|λ∗|− δ) andc = δ(log ξ−Y0 |λ∗|)−ψ0.
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Conclusions

• If we can recognize the basins, we can also recognize when the maps
Gu coalesce.

• If we can recognize map coalescence, we can also do Perfect
Simulation.

• You can find a simulation by clickinghere.

http://www.lbreyer.com/pump.html


Learning more

Preprints and tutorials may be found at the following two sites:

• http://www.dimacs.rutgers.edu/˜dbwilson/exact.html

• http://www.lbreyer.com


