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PS is still at the beginning, and new methods are discovered regularly.
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In MCMC, we commonly have two distinct goals:

Simulation Integration
SO
E S
'l--t o
;s,“‘ o 3"**, P(A|B) = /A P(B | w)P(dw)/P(B)

PS solves the simulation problem completedyid reduces integration
problems to Classical Statistics.




Building Markov chains

There are several equivalent definitions for Markov chains. For PS, we
use a computational definition:

A sequenceX;, X,,...Is a Markov chain if there exists an IID series of
random functions(x), F5(x),...such that

Fi(X1) =X, F(Xp)=X3 ..., F(Xy)=Xn
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The stationary density

Consider the chain over a larger time scale: the stationary density
satisfiesr P = w, where

P(z,dy) = P(Fy(x) € dy) forall¢.
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Here is a path:




The stationary density

Consider the chain over a larger time scale: the stationary density
satisfiesr P = w, where

P(z,dy) = P(Fy(x) € dy) forall¢.

After reordering the occupied states, we get:




Read Once Perfect Simulation

Wilson (1999) showed how to recognize random tifhgsls,. . . when
the chain isexactlyin equilibrium:
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How to find the perfect samples

e Trace all possible paths under the mappitgs F»,. .., looking for
coalescencwvithin m steps:

o LetGy(x), Ga(x),...be defined for alt by:

Gl(CIZ)
GQ(SIZ)

Fm(Fm—l(' .. F1(5E> .. ))
F2m(F2m—1(' .. Fm+1<£€) .. ))

and set

Ty =min{u > 0: G,(x) = G,(y) forall z,y}
Tir1 =min{u > Ty : Gy(z) = Gy(y) for all z, y}




How to find the perfect samples
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The fundamental identity

Lete = P(77 < 1) and write

P(Gi(x) e dy) = (1 — e P(Gi(z) € dy | Ty > 1) + eP(Gy(x) € dy | T1 < 1)
= (1 = ¢)Q(x, dy) + ep(dy).

Thenm =€) 2 (1 — €)°u@”.
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How to ensure coupling occurs

Again assume that we have an IID sequehgefls,. . . of random maps
satisfying

P(z,dy) = P(Fy(x) € dy) forall ¢. (1)

With F;(z) arbitrary, coalescence of Markov chain sample paths need n¢
ever happen. We must modify the maps subject to preserving the
condition ().
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Modifying the updates

e Normally at each iteration, we use a randomly generated functiof
Fi(x) such thatX;,; = F;(X}).

o If Fi(x) = Fy(z') holds for somer, 2/, then there is thpossibility of
coupling.

e Strategy: From F', generate a new random functiép(F') which has
a higher chance of coupling.

e Definition: LetY be independent of, with P(Y = y) = ¢(y) say.

{Y |f p(z,Y )q(F(z)) > U[O 1}

p(,F(2))q(Y)

Cy(F)(z) = F(xz) otherwise.




Modifying the updates
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Modifying the updates
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We call the triangles catalysts. Click .
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e In the formula

Why it works

¢ P )a(F(@)
Yo eream Y

F(x) otherwise.

0, 1]

fix x and defindl(y) = p(z,y), X = F(x) and X' = Cy(F)(x).
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Why it works

e In the formula

£ PV )a(F(r)
Yo e > U]

F(x) otherwise.

fix x and defindl(y) = p(z,y), X = F(x) and X' = Cy(F)(x).
e \We get

e T1(Y)q(X)
e ot > U0, 1]
X otherwise

e Therefore, sincél(dy) = P(X € dy) by assumption, it follows that
P(X’ € dy) = ll(dy) also.




Extensions
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e At every update, let the catalyst come from an independent Markov

chain with identical transition probabilities. Great for Gibbs samplers

¢ \We have the formula

t
IP(X, € ) —nllry <EJ]

=0

S




Pump Example (Autogamma)

oletr=(06,A,..., A10), Simulate
m(x) = exp{(l()a +v—1)log 8 —dp

+Z<(5,€+o¢ — 1) log A — (6+tk)>\k> }7

k=1




Pump Example (Autogamma)

o letx = (5, \1,..., A1), Simulate
m(x) = exp{(l()a +v—1)log 8 —dp

+Z<(5k+o¢ — 1) log A — (6+tk)>\/c) }7

k=1

e Gibbs sampler: One sweep isf : (B, A,..., ) +
(B, N, .., M), where

10

B~ mo(-| A1, -, Awo) = T(y + 100, 6+ ) M),
k=1

Ne ~7e(|B8) =T(a+ s, 0 +tr), k=1,...,10.




Pump Example: coupling

e Transition density is




Pump Example: coupling

e Transition density is

p(By A1y 1050, Ly, o o) = (b | Ar, -y Ado) Hﬂklﬂb

e TakeY ~ g where

10

Q(y(]a Yty - - 7y10) — WO(yO ’ )\>11<7 s o0y )\TO) Hﬂ-k(yk ‘ yo)?
=il




Pump Example: coupling

e After simplification,

v if exp((8' = Vo)Al = 12)) > &,

(B, AL Ajg) otherwise.

Cy(f)(z) = {




Pump Example: coupling

e After simplification,

v if exp((8' = Vo)Al = 12)) > &,

(B, AL Ajg) otherwise.

Cy(f)(z) = {

e Thus
Basir(Y, f,) = {x: (v — 6+ |A)Y) (1Al = IX']) > log ¢ .




Pump Example: coupling

e After simplification,

2a 2a

Basin(Y, /. £) = {x e [—b— Vv b? —4ac’ —b+ Vb2 —4a0} }7

wherea = Y;, b = log & — Yy (|\*| — d) ande = d(log & — Y [ N*|) — .




Conclusions

e If we can recognize the basins, we can also recognize when the mg|
G, coalesce.
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Conclusions

e If we can recognize the basins, we can also recognize when the m
G, coalesce.

e If we can recognize map coalescence, we can also do Perf
Simulation.

¢ You can find a simulation by clicking
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Learning more

Preprints and tutorials may be found at the following two sites:

e http://www.dimacs.rutgers.edu/ dbwilson/exact.html

e http://www.|breyer.com




